966 resultados para ONE-DIMENSIONAL CAVITY


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of free vibration in elastic structure can lead to energy efficient robot locomotion, since it significantly reduces the energy expenditure if properly designed and controlled. However, it is not well understood how to harness the dynamics of free vibration for the robot locomotion, because of the complex dynamics originated in discrete events and energy dissipation during locomotion. From this perspective, this paper explores three minimalistic models of free vibration that can characterize the basic principle of robot locomotion. Since the robot mainly exhibits vertical hopping, three one-dimensional models are examined that contain different configurations of simple spring-damper-mass components. The self-stability of these models are also investigated in simulation. The real-world and simulation experiments show that one of the models best characterizes the robot hopping, through analyzing the basic kinematics and negative works in actuation. Based on this model, the control parameters are analyzed for the energy efficient hopping. © 2013 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We demonstrate in theory that it is possible to all-electrically manipulate the RKKY interaction in a quasi-one-dimensional electron gas embedded in a semiconductor heterostructure, in the presence of Rashba and Dresselhaus spin-orbit interaction. In an undoped semiconductor quantum wire where intermediate excitations are gapped, the interaction becomes the short-ranged Bloembergen-Rowland superexchange interaction. Owing to the interplay of different types of spin-orbit interaction, the interaction can be controlled to realize various spin models, e.g., isotropic and anisotropic Heisenberg-like models, Ising-like models with additional Dzyaloshinsky-Moriya terms, by tuning the external electric field and designing the crystallographic directions. Such controllable interaction forms a basis for quantum computing with localized spins and quantum matters in spin lattices.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We demonstrate that a p-n junction created electrically in HgTe quantum wells with inverted band structure exhibits interesting intraband and interband tunneling processes. We find a perfect intraband transmission for electrons injected perpendicularly to the interface of the p-n junction. The opacity and transparency of electrons through the p-n junction can be tuned by changing the incidence angle, the Fermi energy and the strength of the Rashba spin-orbit interaction (RSOI). The occurrence of a conductance plateau due to the formation of topological edge states in a quasi-one-dimensional (Q1D) p-n junction can be switched on and off by tuning the gate voltage. The spin orientation can be substantially rotated when the samples exhibit a moderately strong RSOI.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this Letter, the classical two-site-ground-state fidelity (CTGF) is exploited to identify quantum phase transitions (QPTs) for the transverse field Ising model (TFIM) and the one-dimensional extended Hubbard model (EHM). Our results show that the CTGF exhibits an abrupt change around the regions of criticality and can be used to identify QPTs in spin and fermionic systems. The method is especially convenient when it is connected with the density-matrix renormalization group (DMRG) algorithm. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Employing the metal-organic chemical vapour deposition (MOCVD) technique, we prepare ZnO samples with different morphologies from the film to nanorods through conveniently changing the bubbled diethylzinc flux (BDF) and the carrier gas flux of oxygen (OCGF). The scanning electron microscope images indicate that small BDF and OCGF induce two-dimensional growth while the large ones avail quasi-one-dimensional growth. X-ray diffraction (XRD) and Raman scattering analyses show that all of the morphology-dependent ZnO samples are of high crystal quality with a c-axis orientation. From the precise shifts of the 2 theta. locations of ZnO (002) face in the XRD patterns and the E-2(high) locations in the Raman spectra, we deduce that the compressive stress forms in the ZnO samples and is strengthened with the increasing BDF and OCGF. Photoluminescence spectroscopy results show all the samples have a sharp ultraviolet luminescent band without any defects-related emission. Upon the experiments a possible growth mechanism is proposed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have studied the lateral carrier transfer in a specially designed quantum dot chain structure by means of time-resolved photoluminescence (PL) and polarization PL. The PL decay time increases with temperature, following the T-1/2 law for the typical one-dimensional quantum system. The decay time depends strongly on the emission energy: it decreases as the photon energy increases. Moreover, a strong polarization anisotropy is observed. These results are attributed to the efficient lateral transfer of carriers along the chain direction. (c) 2008 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wurtzite stalactite-like quasi-one-dimensional ZnS nanoarrays with ZnO protuberances were synthesized through a thermal evaporation route. The structure and morphology of the samples are studied and the growth mechanism is discussed. X-ray diffraction (XRD) results show both the ZnS stem and the ZnO protuberances have wurtzite structure and show preferred [001] oriented growth. The photoluminescence and field emission properties have also been investigated. Room temperature photoluminescence result shows it has a strong green light emission, which has potential application for green light emitter. Experimental results also show that the stalactite arrays have a good field emission property, with turn-on field of 11.4 V/mu m, and threshold field of 16 V/mu m. The ZnO protuberances on the ZnS stem might enhance the field emission notably.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The hole-mediated Curie temperature in Mn-doped wurtzite ZnO nanowires is investigated using the k center dot p method and mean field model. The Curie temperature T-C as a function of the hole density has many peaks for small Mn concentration (x(eff)) due to the density of states of one-dimensional quantum wires. The peaks of T-C are merged by the carriers' thermal distribution when x(eff) is large. High Curie temperature T-C > 400 K is found in (Zn,Mn)O nanowires. A transverse electric field changes the Curie temperature a lot. (Zn,Mn)O nanowires can be tuned from ferromagnetic to paramagnetic by a transverse electric field at room temperature. (c) 2007 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Metallic back structures with one-dimensional periodic nanoridges attached to a thin-film amorphous Si (a-Si) solar cell are numerically studied. At the interfaces between a-Si and metal materials, the excitation of surface-plasmon polaritons leads to obvious absorption enhancements in a wide near-IR range for different ridge shapes and periods. The highest enhancement factor of the cell external quantum efficiency is estimated to be 3.32. The optimized structure can achieve an increase of 17.12% in the cell efficiency. (C) 2009 Optical Society of America

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Quasi-aligned Eu2+-doped wurtzite ZnS nanowires on Au-coated Si wafers have been successfully synthesized by a vapor deposition method under a weakly reducing atmosphere. Compared with the undoped counterpart, incorporation of the dopant gives a modulated composition and crystal structure, which leads to a preferred growth of the nanowires along the [0110] direction and a high density of defects in the nanowire hosts. The ion doping causes intense fluorescence and persistent phosphorescence in ZnS nanowires. The dopant Eu2+ ions form an isoelectronic acceptor level and yield a high density of bound excitions, which contribute to the appearance of the radiative recombination emission of the bound excitons and resonant Raman scattering at higher pumping intensity. Co-dopant Cl- ions can serve not only as donors, producing a donor-acceptor pair transition with the Eu2+ acceptor level, but can also form trap levels together with other defects, capture the photoionization electrons of Eu2+, and yield long-lasting (about 4 min), green phosphorescence. With decreasing synthesis time, the existence of more surface states in the nanowires forms a higher density of trap centers and changes the crystal-field strength around Eu2+. As a result, not only have an enhanced Eu2+ -4f(6)5d(1)-4f(7) intra-ion transition and a prolonged afterglow time been more effectively observed (by decreasing the nanowires' diameters), but also the Eu2+ related emissions are shifted to shorter wavelengths.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A complete Raman study of GaP nanowires is presented. By comparison with the Raman spectra of GaP bulk material, microcrystals and nanoparticles, we give evidence that the Raman spectrum is affected by the one-dimensional shape of the nanowires. The Raman spectrum is sensitive to the polarization of the laser light. A specific shape of the overtones located between 600 and 800 cm(-1) is actually a signature of the nanowires. Some phonon confinement and thermal behavior is also observed for nanowires.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A low power consumption 2 x 2 thermo-optic switch with fast response was fabricated on silicon-on-insulator by anisotropy chemical etching. Blocking trenches were etched on both sides of the phase-shifting arms to shorten device length and reduce power consumption. Thin top cladding layer was grown to reduce power consumption and switching time. The device showed good characteristics, including a low switching power of 145 mW and a fast switching speed of 8 +/- 1 mus, respectively. Two-dimensional finite element method was applied to simulate temperature field in the phase-shifting arm instead of conventional one-dimensional method. According to the simulated result, a new two-dimensional index distribution of phase-shifting arm was determined. Consequently finite-difference beam propagation method was employed to simulate the light propagation in the switch, and calculate the power consumption as well as the switching speed. The experimental results were in good agreement with the theoretical estimations. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We introduce the concept of the Loschmidt echo (LE) to the space of the reduced density matrix of spin and fermionic systems to study the density matrix LEs (DMLEs) of the one-dimensional extended Hubbard model and the transverse field Ising model. Our results show that the DMLEs are remarkably influenced by the criticality of the system, and the method is a convenient way to study quantum phase transitions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate plasmon excitations in a quantum wire that consists of an infinite one-dimensional array of vertically coupled InAs/GaAs strained quantum dots (QDs). The research is carried out in the framework of random-phase approximation using effective-mass theory. Our formalism is capable of studying plasmons with strong tunneling among QDs, which frustrate the conventionally adopted tight-binding approximation. Based on this formalism, a systematic study on the intraminiband or intrasubband plasmon in vertically coupled InAs/GaAs strained QDs is presented. It is found that an increase of the dot spacing will inevitably reduce the plasmon energy. In contrast, the role of dot height is relatively complex and depends on the dot spacing. The results demonstrate the possibility to engineer collective excitations in low dimensional systems by simply changing their geometric configuration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Curie temperature of diluted magnetic semiconductor (DMS) nanowires and nanoslabs is investigated using the mean-field model. The Curie temperature in DMS nanowires can be much larger than that in corresponding bulk material due to the density of states of one-dimensional quantum wires, and when only one conduction subband is filled, the Curie temperature is inversely proportional to the carrier density. The T-C in DMS nanoslabs is dependent on the carrier density through the number of the occupied subbands. A transverse electric field can change the DMS nanowires from the paramagnet to ferromagnet, or vice versae. (c) 2007 American Institute of Physics.