978 resultados para Nucleotide-sequence Analysis
Resumo:
Begomoviruses are whitefly-transmitted, single-stranded DNA viruses that are often associated with weed plants. The aim of this study was to further characterize the diversity of begomoviruses infecting weeds (mostly Sida spp.) in Brazil. Total DNA was extracted from weed samples collected in Viçosa (Minas Gerais state) and in some municipalities of Alagoas state in 2009 and 2010. Viral genomes were amplified by RCA, cloned and sequenced. A total of 26 DNA-A clones were obtained. Sequence analysis indicated the presence of 10 begomoviruses. All viral isolates from Blainvillea rhomboidea belonged to the same species, Blainvillea yellow spot virus (BlYSV ), thereby suggesting that BlYSV may be the only begomovirus present in this weed species. Four isolates represent new species, for which the following names are proposed: Sida yellow blotch virus (SiYBV), Sida yellow net virus (SiYNV), Sida mottle Alagoas virus (SiMoAV) and Sida yellow mosaic Alagoas virus (SiYMAV). Recombination events were detected among the SiYBV isolates and in the SiYNV isolate. These results constitute further evidence of the high species diversity of begomoviruses in Sida spp. However, the role of this weed species as a source of begomoviruses infecting crop plants remains to be determined.
Resumo:
Azospirillum amazonense revealed genomic organization patterns of the nitrogen fixation genes similar to those of the distantly related species A. brasilense. Our work suggests that A. brasilense nifHDK, nifENX, fixABC operons and nifA and glnB genes may be structurally homologous to the counterpart genes of A. amazonense. This is the first analysis revealing homology between A. brasilense nif genes and the A. amazonense genome. Sequence analysis of PCR amplification products revealed similarities between the amino acid sequences of the highly conserved nifD and glnB genes of A. amazonense and related genes of A. brasilense and other bacteria. However, the A. amazonense non-coding regions (the upstream activator sequence region and the region between the nifH and nifD genes) differed from related regions of A. brasilense even in nitrogenase structural genes which are highly conserved among diazotrophic bacteria. The feasibility of the 16S ribosomal RNA gene-based PCR system for specific detection of A. amazonense was shown. Our results indicate that the PCR primers for 16S rDNA defined in this article are highly specific to A. amazonense and can distinguish this species from A. brasilense.
Resumo:
We describe the clinical and molecular characteristics of two unrelated Brazilian families with an association of the Sicilian form of (dß)º-thalassemia with hemoglobin S and ß-thalassemia. Direct sequencing of the ß-globin gene showed only the hemoglobin S mutation in patient 1 and the ß-thalassemia IVS1-110 in patient 2. The other allele was deleted in both patients and PCR of DNA samples of the breakpoint region of both patients showed a band of approximately 1,150 bp, expected to be observed in the DNA of carriers of Sicilian (dß)º-thalassemia. The nucleotide sequence of this fragment confirmed the Sicilian deletion. There are few reports concerning the Hb S/(dß)º-thalassemia association and patient 2 is the first reported case of Sicilian type of (dß)º-thalassemia in association with ß-thalassemia documented at the molecular level.
Resumo:
We have developed a software called pp-Blast that uses the publicly available Blast package and PVM (parallel virtual machine) to partition a multi-sequence query across a set of nodes with replicated or shared databases. Benchmark tests show that pp-Blast running in a cluster of 14 PCs outperformed conventional Blast running in large servers. In addition, using pp-Blast and the cluster we were able to map all human cDNAs onto the draft of the human genome in less than 6 days. We propose here that the cost/benefit ratio of pp-Blast makes it appropriate for large-scale sequence analysis. The source code and configuration files for pp-Blast are available at http://www.ludwig.org.br/biocomp/tools/pp-blast.
Resumo:
We report novel features of the genome sequence of Leptospira interrogans serovar Copenhageni, a highly invasive spirochete. Leptospira species colonize a significant proportion of rodent populations worldwide and produce life-threatening infections in mammals. Genomic sequence analysis reveals the presence of a competent transport system with 13 families of genes encoding for major transporters including a three-member component efflux system compatible with the long-term survival of this organism. The leptospiral genome contains a broad array of genes encoding regulatory system, signal transduction and methyl-accepting chemotaxis proteins, reflecting the organism's ability to respond to diverse environmental stimuli. The identification of a complete set of genes encoding the enzymes for the cobalamin biosynthetic pathway and the novel coding genes related to lipopolysaccharide biosynthesis should bring new light to the study of Leptospira physiology. Genes related to toxins, lipoproteins and several surface-exposed proteins may facilitate a better understanding of the Leptospira pathogenesis and may serve as potential candidates for vaccine.
Resumo:
The Down's syndrome candidate region 1 (DSCR1) protein, encoded by a gene located in the human chromosome 21, interacts with calcineurin and is overexpressed in Down's syndrome patients. As an approach to clarifying a putative function for this protein, in the present study we used the yeast two-hybrid system to identify DSCR1 partners. The two-hybrid system is a method that allows the identification of protein-protein interactions through reconstitution of the activity of the yeast GAL 4 transcriptional activator. The gene DSCR1 fused to the GAL 4 binding domain (BD) was used to screen a human fetal brain cDNA library cloned in fusion with the GAL 4 activation domain (AD). Three positive clones were found and sequence analysis revealed that all the plasmids coded for the ubiquitously expressed transcript (UXT). UXT, which is encoded in human Xp11, is a 157-amino acid protein present in both cytosol and nucleus of the cells. This positive interaction of DSCR1 and UXT was confirmed in vivo by mating the yeast strain AH109 (MATa)expressing AD-UXT with the strain Y187 (MATalpha) expressing BD-DSCR1, and in vitro by co-immunoprecipitation experiments. These results may help elucidate a new function for DSCR1 and its participation in Down's syndrome pathogenesis.
Resumo:
Human papillomavirus genomes are classified into molecular variants when they present more than 98% of similarity to the prototype sequence within the L1 gene. Comparative nucleotide sequence analyses of these viruses have elucidated some features of their phylogenetic relationship. In addition, human papillomavirus intratype variability has also been used as an important tool in epidemiological studies of viral transmission, persistence and progression to clinically relevant cervical lesions. Until the present, little has been published concerning the functional significance of molecular variants. It has been shown that nucleotide variability within the long control region leads to differences in the binding affinity of some cellular transcriptional factors and to the enhancement of the expression of E6 and E7 oncogenes. Furthermore, in vivo and in vitro studies revealed differences in E6 and E7 biochemical and biological properties among molecular variants. Nevertheless, further correlation with additional functional information is needed to evaluate the significance of genome intratypic variability. These results are also important for the development of vaccines and to determine the extent to which immunization with L1 virus-like particles of one variant could induce antibodies that cross-neutralize other variants.
Resumo:
Calves born persistently infected with non-cytopathic bovine viral diarrhea virus (ncpBVDV) frequently develop a fatal gastroenteric illness called mucosal disease. Both the original virus (ncpBVDV) and an antigenically identical but cytopathic virus (cpBVDV) can be isolated from animals affected by mucosal disease. Cytopathic BVDVs originate from their ncp counterparts by diverse genetic mechanisms, all leading to the expression of the non-structural polypeptide NS3 as a discrete protein. In contrast, ncpBVDVs express only the large precursor polypeptide, NS2-3, which contains the NS3 sequence within its carboxy-terminal half. We report here the investigation of the mechanism leading to NS3 expression in 41 cpBVDV isolates. An RT-PCR strategy was employed to detect RNA insertions within the NS2-3 gene and/or duplication of the NS3 gene, two common mechanisms of NS3 expression. RT-PCR amplification revealed insertions in the NS2-3 gene of three cp isolates, with the inserts being similar in size to that present in the cpBVDV NADL strain. Sequencing of one such insert revealed a 296-nucleotide sequence with a central core of 270 nucleotides coding for an amino acid sequence highly homologous (98%) to the NADL insert, a sequence corresponding to part of the cellular J-Domain gene. One cpBVDV isolate contained a duplication of the NS3 gene downstream from the original locus. In contrast, no detectable NS2-3 insertions or NS3 gene duplications were observed in the genome of 37 cp isolates. These results demonstrate that processing of NS2-3 without bulk mRNA insertions or NS3 gene duplications seems to be a frequent mechanism leading to NS3 expression and BVDV cytopathology.
Resumo:
Hantavirus cardiopulmonary syndrome (HCPS) has been recognized as an important public heath problem. Five hantaviruses associated with HCPS are currently known in Brazil: Juquitiba, Araraquara, Laguna Negra-like, Castelo dos Sonhos, and Anajatuba viruses. The laboratory diagnosis of HCPS is routinely carried out by the detection of anti-hantavirus IgM and/or IgG antibodies. The present study describes the expression of the N protein of a hantavirus detected in the blood sample of an HCPS patient. The entire S segment of the virus was amplified and found to be 1858 nucleotides long, with an open reading frame of 1287 nucleotides that encodes a protein of 429 amino acids. The nucleotide sequence described here showed a high identity with the N protein gene of Araraquara virus. The entire N protein was expressed using the vector pET200D and the Escherichia coli BL21 strain. The expression of the recombinant protein was confirmed by the detection of a 52-kDa protein by Western blot using a pool of human sera obtained from HCPS patients, and by specific IgG detection in five serum samples of HCPS patients tested by ELISA. These results suggest that the recombinant N protein could be used as an antigen for the serological screening of hantavirus infection.
Resumo:
A bacterial strain (PAP04) isolated from cattle farm soil was shown to produce an extracellular, solvent-stable protease. Sequence analysis using 16S rRNA showed that this strain was highly homologous (99%) to Brevibacillus laterosporus. Growth conditions that optimize protease production in this strain were determined as maltose (carbon source), skim milk (nitrogen source), pH 7.0, 40°C temperature, and 48 h incubation. Overall, conditions were optimized to yield a 5.91-fold higher production of protease compared to standard conditions. Furthermore, the stability of the enzyme in organic solvents was assessed by incubation for 2 weeks in solutions containing 50% concentration of various organic solvents. The enzyme retained activity in all tested solvents except ethanol; however, the protease activity was stimulated in benzene (74%) followed by acetone (63%) and chloroform (54.8%). In addition, the plate assay and zymography results also confirmed the stability of the PAP04 protease in various organic solvents. The organic solvent stability of this protease at high (50%) concentrations of solvents makes it an alternative catalyst for peptide synthesis in non-aqueous media.
Resumo:
The importance of the study of acetic bacteria, on species of the Gluconobacter genus is based on its industrial application, as these possess the capacity of bioconversion of sorbitol to sorbose, enabling the process of vitamin C production. The study involved samples collected in industries of soft drinks, flowers, fruits and honey, followed by purification, phenotypic identification, molecular identification with the use of primer defined from Nucleotide Sequence Database consultation. Strains preserved were identified as members of the Acetobacteraceae family, Gluconobacter genus. 110 strains had been isolated of substrate: Pyrostegia venusta (ker-gawler), honey, Vitis vinifera (grape), Pyrus communis (pear), Malus sp. (apple) and in two samples of soft drinks. Of this total 57 strains had been recovered in manitol medium (manitol, yeast extract, peptone), 12 in YMG medium (glucose, manitol, yeast extract, ethanol, acetic acid), 41 in enrichment medium (De Ley and Swings) and later in the GYC medium (glucose, yeast extract and calcium carbonate). 68 strains were identified as Gram negative bacilli rods. Of these, 31 were characterized biochemically as belonging to the Acetobacteriaceae family as they were catalase positive, oxidase negative and producers of acid from glucose. The characterization of these strains was complemented with the biochemistry tests: gelatin liquefaction, nitrate reduction, indole and H2S production, oxidation of ethanol to acetic acid and molecular tests for genus identification. Only eight strains were characterized as pertaining to the Gluconobacter genus. The strains are maintained in collection cultures at the Microbiology Laboratory of the Biology Department at the São Paulo State University (UNESP) in Assis, stored in malt extract at -196 ºC.
Resumo:
Iron is an essential element for nearly all living organisms, and its deficiency is the most common form of malnutrition in the world. The organic forms of trace elements are considered more bioavailable than the inorganic forms. Although Saccharomyces cerevisiae can enrich metal elements and convert inorganic iron to organic species, its tolerability and transforming capacity are limited. The aim of this study was to screen higher biomass and other iron-enriched fungi strains besides Saccharomyces cerevisiae from the natural environment. A PDA medium containing 800 μg/mL iron was used for initial screening. Fifty strains that tolerated high iron concentration were isolated from the natural environment, and only one strain, No.BY1109, grew well at Fe (II) concentration of 10,000μg/ml. According to morphological characterization, 18S rDNA sequence analysis, and biophysical and biochemical characterization, the strain No.BY1109 was identified as Rhodotorula. The iron content of No.BY1109 (10 mg Fe/g dry cell) was determined using atomic absorption spectrometry. The results of distribution of iron in the cells showed that iron ion was mainly chelated in the cell walls and vacuoles. The bioavailability in rats confirmed that strain No.BY1109 had higher absorption efficiency than that of ferrous sulfate after single dose oral administration. The present study introduces new iron supplements, and it is a basis for finding new iron supplements from natural environment.
Resumo:
ABSTRACT Recombinant adenoviruses are currently under intense investigation as potential gene delivery and gene expression vectors with applications in human and veterinary medicine. As part of our efforts to develop a bovine adenovirus type 2 (BAV2) based vector system, the nucleotide sequence of BAV2 was determined. Sixty-six open reading frames (ORFs) were found with the potential to encode polypeptides that were at least 50 amino acid (aa) residue long. Thirty-one of the BAV2 polypeptide sequences were found to share homology to already identified adenovirus proteins. The arrangement of the genes revealed that the BAV2 genomic organization closely resembles that of well-characterized human adenoviruses. In the course of this study, continuous propagation of BAV2 over many generations in cell culture resulted in the isolation of a BAV2 spontaneous mutant in which the E3 region was deleted. Restriction enzyme, sequencing and PCR analyses produced concordant results that precisely located the deletion and revealed that its size was exactly 1299 bp. The E3-deleted virus was plaque-purified and further propagated in cell culture. It appeared that the replication of such a virus lacking a portion of the E3 region was not affected, at least in cell culture. Attempts to rescue a recombinant BAV2 virus with the bacterial kanamycin resistance gene in the E3 region yielded a candidate as verified with extensive Southern blotting and PCR analyses. Attempts to purify the recombinant virus were not successful, suggesting that such recombinant BAV2 was helper-dependent. Ten clones containing full-length BAV2 genomes in a pWE15 cosmid vector were constructed. The infectivity of these constructs was tested by using different transfection methods. The BAV2 genomic clones did appear to be infectious only after extended incubation period. This may be due to limitations of various transfection methods tested, or biological differences between virus- and E. co//-derived BAV2 DNA.
Resumo:
The ability to introduce DNA and express custom DNA sequences in bacteria opened the door for improvements in a large number of fields including agriculture, pharmacology, medicine, nutrition, etc. The ability to introduce foreign DNA sequences into mammalian cells in an efficient manner would have a large impact on therapeutic applications especially gene therapy. The methods in use today suffer from low efficiencies and sometimes toxicity. In this work a number of factors were evaluated for their effect onONA uptake efficiency. The factors studied included exposure to sublethal concentration of hydrogen peroxide which have been show to lead to destabilisation ofthe lysosomes. These exposures have proven to be very toxic to cells when combined with either the calcium phosphate or the lipofectAMINE® transfection methods. Another factor evaluated was exposure to Electro-Magnetic Fields (EMF). This was fuelled by the fact that EMF have been shown to mediate a number of effects on cell structure and/or physiology. EMF exposure by itself was not sufficient to induce the cells to pick up the DNA, therefore its effect on calcium phosphate and lipofectAMINE® was tested. Although some positive results were obtained, the variability of these results exceeded by far any observed enhancements which discouraged any further work on EMF. Also tested was the possible effect the presence of the cytomegalovirus (CMV) sequence might have on DNA uptake (based on previous results in this lab). It was found that the presence ofCMV in the DNA sequence does not enhance uptake or slow down degradation of the internalised DNA. The final factor tested was the effect of basic amino acids on transfection efficiency. It was found that arginine can enhance DNA uptake by about 170% v/ith calcium phosphate and about 200% with LipofectAMINE®. A model was proposed to explain the effect of arginine as well as the lack of effect from other amino acids.
Resumo:
The cloned dihydrofolate reductase gene of Saccharomyces cerevisiae (DFR 1) is expressed in Escherichia coli. Bacterial strain JF1754 transformed with plasmids containing DFR 1 is at least 5X more resistant to inhibition by the folate antagonist trimethoprim. Expression of yeast DFR 1 in E. coli suggests it is likely that the gene lacks intervening sequences. The 1.8 kbp DNA fragment encoding yeast dhfr activity probably has its own promotor, as the gene is expressed in both orientations in E. coli. Expression of the yeast dhfr gene cloned into M13 viral vectors allowed positive selection of DFR 1 - M13 bacterial transfectants in medium supplemented with trimethoprim. A series of nested deletions generated by nuclease Bal 31 digestion and by restriction endonuclease cleavage of plasmids containing DFR 1 physically mapped the gene to a 930 bp region between the Pst 1 and Sal 1 cut sites. This is consistent with the 21,000 molecular weight attributed to yeast dhfr in previous reports. From preliminary DNA sequence analysis of the dhfr DNA fragment the 3' terminus of DFR 1 was assigned to a position 27 nucleotides from the Eco Rl cut site on the Bam Hi - Eco Rl DNA segment. Several putative yeast transcription termination consensus sequences were identified 3' to the opal stop codon. DFR 1 is expressed in yeast and it confers resistance to the antifolate methotrexate when the gene is present in 2 - 10 copies per cell. Plasmid-dependent resistance to methotrexate is also observed in a rad 6 background although the effect is somewhat less than that conferred to wild-type or rad 18 cells. Integration of DFR 1 into the yeast genome showed an intermediate sensitivity to folate antagonists. This may suggest a gene dosage effect. No change in petite induction in these yeast strains was observed in transformed cells containing yeast dhfr plasmids. The sensitivity of rad 6 , rad 18 and wild-type cell populations to trimethoprim were unaffected by the presence of DFR 1 in transformants. Moreover, trimethoprim did not induce petites in any strain tested, which normally results if dhfr is inhibited by other antifolates such as methotrexate. This may suggest that the dhfr enzyme is not the only possible target of trimethoprim in yeast. rad 6 mutants showed a very low level of spontaneous petite formation. Methotrexate failed to induce respiratory deficient mutants in this strain which suggested that rad 6 might be an obligate grande. However, ethidium bromide induced petites to a level approximately 50% of that exhibited by wild-type and rad 18 strains.