947 resultados para Nonnegative sine polynomial


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Various results on parity of the number of irreducible factors of given polynomials over finite fields have been obtained in the recent literature. Those are mainly based on Swan’s theorem in which discriminants of polynomials over a finite field or the integral ring Z play an important role. In this paper we consider discriminants of the composition of some polynomials over finite fields. The relation between the discriminants of composed polynomial and the original ones will be established. We apply this to obtain some results concerning the parity of the number of irreducible factors for several special polynomials over finite fields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Irreducible trinomials of given degree n over F_2 do not always exist and in the cases that there is no irreducible trinomial of degree n it may be effective to use trinomials with an irreducible factor of degree n. In this paper we consider some conditions under which irreducible polynomials divide trinomials over F_2. A condition for divisibility of self-reciprocal trinomials by irreducible polynomials over F_2 is established. And we extend Welch's criterion for testing if an irreducible polynomial divides trinomials x^m + x^s + 1 to the trinomials x^am + x^bs + 1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper contributes to the study of Freely Rewriting Restarting Automata (FRR-automata) and Parallel Communicating Grammar Systems (PCGS), which both are useful models in computational linguistics. For PCGSs we study two complexity measures called 'generation complexity' and 'distribution complexity', and we prove that a PCGS Pi, for which the generation complexity and the distribution complexity are both bounded by constants, can be transformed into a freely rewriting restarting automaton of a very restricted form. From this characterization it follows that the language L(Pi) generated by Pi is semi-linear, that its characteristic analysis is of polynomial size, and that this analysis can be computed in polynomial time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In der Arbeit werden zunächst die wesentlichsten Fakten über Schiefpolynome wiederholt, der Fokus liegt dabei auf Shift- und q-Shift-Operatoren in Charakteristik Null. Alle für die Arithmetik mit diesen Objekten notwendigen Konzepte und Algorithmen finden sich im ersten Kapitel. Einige der zur Bestimmung von Lösungen notwendigen Daten können aus dem Newtonpolygon, einer den Operatoren zugeordneten geometrischen Figur, abgelesen werden. Die Herleitung dieser Zusammenhänge ist das Thema des zweiten Kapitels der Arbeit, wobei dies insbesondere im q-Shift-Fall in dieser Form neu ist. Das dritte Kapitel beschäftigt sich mit der Bestimmung polynomieller und rationaler Lösungen dieser Operatoren, dabei folgt es im Wesentlichen der Darstellung von Mark van Hoeij. Der für die Faktorisierung von (q-)Shift Operatoren interessanteste Fall sind die sogenannten (q-)hypergeometrischen Lösungen, die direkt zu Rechtsfaktoren erster Ordnung korrespondieren. Im vierten Kapitel wird der van Hoeij-Algorithmus vom Shift- auf den q-Shift-Fall übertragen. Außerdem wird eine deutliche Verbesserung des q-Petkovsek-Algorithmus mit Hilfe der Daten des Newtonpolygons hergeleitet. Das fünfte Kapitel widmet sich der Berechnung allgemeiner Faktoren, wozu zunächst der adjungierte Operator eingeführt wird, der die Berechnung von Linksfaktoren erlaubt. Dann wird ein Algorithmus zur Berechnung von Rechtsfaktoren beliebiger Ordnung dargestellt. Für die praktische Benutzung ist dies allerdings für höhere Ordnungen unpraktikabel. Bei fast allen vorgestellten Algorithmen tritt das Lösen linearer Gleichungssysteme über rationalen Funktionenkörpern als Zwischenschritt auf. Dies ist in den meisten Computeralgebrasystemen nicht befriedigend gelöst. Aus diesem Grund wird im letzten Kapitel ein auf Evaluation und Interpolation basierender Algorithmus zur Lösung dieses Problems vorgestellt, der in allen getesteten Systemen den Standard-Algorithmen deutlich überlegen ist. Alle Algorithmen der Arbeit sind in einem MuPAD-Package implementiert, das der Arbeit beiliegt und eine komfortable Handhabung der auftretenden Objekte erlaubt. Mit diesem Paket können in MuPAD nun viele Probleme gelöst werden, für die es vorher keine Funktionen gab.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die q-Analysis ist eine spezielle Diskretisierung der Analysis auf einem Gitter, welches eine geometrische Folge darstellt, und findet insbesondere in der Quantenphysik eine breite Anwendung, ist aber auch in der Theorie der q-orthogonalen Polynome und speziellen Funktionen von großer Bedeutung. Die betrachteten mathematischen Objekte aus der q-Welt weisen meist eine recht komplizierte Struktur auf und es liegt daher nahe, sie mit Computeralgebrasystemen zu behandeln. In der vorliegenden Dissertation werden Algorithmen für q-holonome Funktionen und q-hypergeometrische Reihen vorgestellt. Alle Algorithmen sind in dem Maple-Package qFPS, welches integraler Bestandteil der Arbeit ist, implementiert. Nachdem in den ersten beiden Kapiteln Grundlagen geschaffen werden, werden im dritten Kapitel Algorithmen präsentiert, mit denen man zu einer q-holonomen Funktion q-holonome Rekursionsgleichungen durch Kenntnis derer q-Shifts aufstellen kann. Operationen mit q-holonomen Rekursionen werden ebenfalls behandelt. Im vierten Kapitel werden effiziente Methoden zur Bestimmung polynomialer, rationaler und q-hypergeometrischer Lösungen von q-holonomen Rekursionen beschrieben. Das fünfte Kapitel beschäftigt sich mit q-hypergeometrischen Potenzreihen bzgl. spezieller Polynombasen. Wir formulieren einen neuen Algorithmus, der zu einer q-holonomen Rekursionsgleichung einer q-hypergeometrischen Reihe mit nichttrivialem Entwicklungspunkt die entsprechende q-holonome Rekursionsgleichung für die Koeffizienten ermittelt. Ferner können wir einen neuen Algorithmus angeben, der umgekehrt zu einer q-holonomen Rekursionsgleichung für die Koeffizienten eine q-holonome Rekursionsgleichung der Reihe bestimmt und der nützlich ist, um q-holonome Rekursionen für bestimmte verallgemeinerte q-hypergeometrische Funktionen aufzustellen. Mit Formulierung des q-Taylorsatzes haben wir schließlich alle Zutaten zusammen, um das Hauptergebnis dieser Arbeit, das q-Analogon des FPS-Algorithmus zu erhalten. Wolfram Koepfs FPS-Algorithmus aus dem Jahre 1992 bestimmt zu einer gegebenen holonomen Funktion die entsprechende hypergeometrische Reihe. Wir erweitern den Algorithmus dahingehend, dass sogar Linearkombinationen q-hypergeometrischer Potenzreihen bestimmt werden können. ________________________________________________________________________________________________________________

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main aim of this paper is the development of suitable bases (replacing the power basis x^n (n\in\IN_\le 0) which enable the direct series representation of orthogonal polynomial systems on non-uniform lattices (quadratic lattices of a discrete or a q-discrete variable). We present two bases of this type, the first of which allows to write solutions of arbitrary divided-difference equations in terms of series representations extending results given in [16] for the q-case. Furthermore it enables the representation of the Stieltjes function which can be used to prove the equivalence between the Pearson equation for a given linear functional and the Riccati equation for the formal Stieltjes function. If the Askey-Wilson polynomials are written in terms of this basis, however, the coefficients turn out to be not q-hypergeometric. Therefore, we present a second basis, which shares several relevant properties with the first one. This basis enables to generate the defining representation of the Askey-Wilson polynomials directly from their divided-difference equation. For this purpose the divided-difference equation must be rewritten in terms of suitable divided-difference operators developed in [5], see also [6].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inhalt dieser Arbeit ist ein Verfahren zur numerischen Lösung der zweidimensionalen Flachwassergleichung, welche das Fließverhalten von Gewässern, deren Oberflächenausdehnung wesentlich größer als deren Tiefe ist, modelliert. Diese Gleichung beschreibt die gravitationsbedingte zeitliche Änderung eines gegebenen Anfangszustandes bei Gewässern mit freier Oberfläche. Diese Klasse beinhaltet Probleme wie das Verhalten von Wellen an flachen Stränden oder die Bewegung einer Flutwelle in einem Fluss. Diese Beispiele zeigen deutlich die Notwendigkeit, den Einfluss von Topographie sowie die Behandlung von Nass/Trockenübergängen im Verfahren zu berücksichtigen. In der vorliegenden Dissertation wird ein, in Gebieten mit hinreichender Wasserhöhe, hochgenaues Finite-Volumen-Verfahren zur numerischen Bestimmung des zeitlichen Verlaufs der Lösung der zweidimensionalen Flachwassergleichung aus gegebenen Anfangs- und Randbedingungen auf einem unstrukturierten Gitter vorgestellt, welches in der Lage ist, den Einfluss topographischer Quellterme auf die Strömung zu berücksichtigen, sowie in sogenannten \glqq lake at rest\grqq-stationären Zuständen diesen Einfluss mit den numerischen Flüssen exakt auszubalancieren. Basis des Verfahrens ist ein Finite-Volumen-Ansatz erster Ordnung, welcher durch eine WENO Rekonstruktion unter Verwendung der Methode der kleinsten Quadrate und eine sogenannte Space Time Expansion erweitert wird mit dem Ziel, ein Verfahren beliebig hoher Ordnung zu erhalten. Die im Verfahren auftretenden Riemannprobleme werden mit dem Riemannlöser von Chinnayya, LeRoux und Seguin von 1999 gelöst, welcher die Einflüsse der Topographie auf den Strömungsverlauf mit berücksichtigt. Es wird in der Arbeit bewiesen, dass die Koeffizienten der durch das WENO-Verfahren berechneten Rekonstruktionspolynome die räumlichen Ableitungen der zu rekonstruierenden Funktion mit einem zur Verfahrensordnung passenden Genauigkeitsgrad approximieren. Ebenso wird bewiesen, dass die Koeffizienten des aus der Space Time Expansion resultierenden Polynoms die räumlichen und zeitlichen Ableitungen der Lösung des Anfangswertproblems approximieren. Darüber hinaus wird die wohlbalanciertheit des Verfahrens für beliebig hohe numerische Ordnung bewiesen. Für die Behandlung von Nass/Trockenübergangen wird eine Methode zur Ordnungsreduktion abhängig von Wasserhöhe und Zellgröße vorgeschlagen. Dies ist notwendig, um in der Rechnung negative Werte für die Wasserhöhe, welche als Folge von Oszillationen des Raum-Zeit-Polynoms auftreten können, zu vermeiden. Numerische Ergebnisse die die theoretische Verfahrensordnung bestätigen werden ebenso präsentiert wie Beispiele, welche die hervorragenden Eigenschaften des Gesamtverfahrens in der Berechnung herausfordernder Probleme demonstrieren.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The identification of chemical mechanism that can exhibit oscillatory phenomena in reaction networks are currently of intense interest. In particular, the parametric question of the existence of Hopf bifurcations has gained increasing popularity due to its relation to the oscillatory behavior around the fixed points. However, the detection of oscillations in high-dimensional systems and systems with constraints by the available symbolic methods has proven to be difficult. The development of new efficient methods are therefore required to tackle the complexity caused by the high-dimensionality and non-linearity of these systems. In this thesis, we mainly present efficient algorithmic methods to detect Hopf bifurcation fixed points in (bio)-chemical reaction networks with symbolic rate constants, thereby yielding information about their oscillatory behavior of the networks. The methods use the representations of the systems on convex coordinates that arise from stoichiometric network analysis. One of the methods called HoCoQ reduces the problem of determining the existence of Hopf bifurcation fixed points to a first-order formula over the ordered field of the reals that can then be solved using computational-logic packages. The second method called HoCaT uses ideas from tropical geometry to formulate a more efficient method that is incomplete in theory but worked very well for the attempted high-dimensional models involving more than 20 chemical species. The instability of reaction networks may lead to the oscillatory behaviour. Therefore, we investigate some criterions for their stability using convex coordinates and quantifier elimination techniques. We also study Muldowney's extension of the classical Bendixson-Dulac criterion for excluding periodic orbits to higher dimensions for polynomial vector fields and we discuss the use of simple conservation constraints and the use of parametric constraints for describing simple convex polytopes on which periodic orbits can be excluded by Muldowney's criteria. All developed algorithms have been integrated into a common software framework called PoCaB (platform to explore bio- chemical reaction networks by algebraic methods) allowing for automated computation workflows from the problem descriptions. PoCaB also contains a database for the algebraic entities computed from the models of chemical reaction networks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we have mainly achieved the following: 1. we provide a review of the main methods used for the computation of the connection and linearization coefficients between orthogonal polynomials of a continuous variable, moreover using a new approach, the duplication problem of these polynomial families is solved; 2. we review the main methods used for the computation of the connection and linearization coefficients of orthogonal polynomials of a discrete variable, we solve the duplication and linearization problem of all orthogonal polynomials of a discrete variable; 3. we propose a method to generate the connection, linearization and duplication coefficients for q-orthogonal polynomials; 4. we propose a unified method to obtain these coefficients in a generic way for orthogonal polynomials on quadratic and q-quadratic lattices. Our algorithmic approach to compute linearization, connection and duplication coefficients is based on the one used by Koepf and Schmersau and on the NaViMa algorithm. Our main technique is to use explicit formulas for structural identities of classical orthogonal polynomial systems. We find our results by an application of computer algebra. The major algorithmic tools for our development are Zeilberger’s algorithm, q-Zeilberger’s algorithm, the Petkovšek-van-Hoeij algorithm, the q-Petkovšek-van-Hoeij algorithm, and Algorithm 2.2, p. 20 of Koepf's book "Hypergeometric Summation" and it q-analogue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A large class of special functions are solutions of systems of linear difference and differential equations with polynomial coefficients. For a given function, these equations considered as operator polynomials generate a left ideal in a noncommutative algebra called Ore algebra. This ideal with finitely many conditions characterizes the function uniquely so that Gröbner basis techniques can be applied. Many problems related to special functions which can be described by such ideals can be solved by performing elimination of appropriate noncommutative variables in these ideals. In this work, we mainly achieve the following: 1. We give an overview of the theoretical algebraic background as well as the algorithmic aspects of different methods using noncommutative Gröbner elimination techniques in Ore algebras in order to solve problems related to special functions. 2. We describe in detail algorithms which are based on Gröbner elimination techniques and perform the creative telescoping method for sums and integrals of special functions. 3. We investigate and compare these algorithms by illustrative examples which are performed by the computer algebra system Maple. This investigation has the objective to test how far noncommutative Gröbner elimination techniques may be efficiently applied to perform creative telescoping.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In der algebraischen Kryptoanalyse werden moderne Kryptosysteme als polynomielle, nichtlineare Gleichungssysteme dargestellt. Das Lösen solcher Gleichungssysteme ist NP-hart. Es gibt also keinen Algorithmus, der in polynomieller Zeit ein beliebiges nichtlineares Gleichungssystem löst. Dennoch kann man aus modernen Kryptosystemen Gleichungssysteme mit viel Struktur generieren. So sind diese Gleichungssysteme bei geeigneter Modellierung quadratisch und dünn besetzt, damit nicht beliebig. Dafür gibt es spezielle Algorithmen, die eine Lösung solcher Gleichungssysteme finden. Ein Beispiel dafür ist der ElimLin-Algorithmus, der mit Hilfe von linearen Gleichungen das Gleichungssystem iterativ vereinfacht. In der Dissertation wird auf Basis dieses Algorithmus ein neuer Solver für quadratische, dünn besetzte Gleichungssysteme vorgestellt und damit zwei symmetrische Kryptosysteme angegriffen. Dabei sind die Techniken zur Modellierung der Chiffren von entscheidender Bedeutung, so das neue Techniken entwickelt werden, um Kryptosysteme darzustellen. Die Idee für das Modell kommt von Cube-Angriffen. Diese Angriffe sind besonders wirksam gegen Stromchiffren. In der Arbeit werden unterschiedliche Varianten klassifiziert und mögliche Erweiterungen vorgestellt. Das entstandene Modell hingegen, lässt sich auch erfolgreich auf Blockchiffren und auch auf andere Szenarien erweitern. Bei diesen Änderungen muss das Modell nur geringfügig geändert werden.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Support Vector (SV) machine is a novel type of learning machine, based on statistical learning theory, which contains polynomial classifiers, neural networks, and radial basis function (RBF) networks as special cases. In the RBF case, the SV algorithm automatically determines centers, weights and threshold such as to minimize an upper bound on the expected test error. The present study is devoted to an experimental comparison of these machines with a classical approach, where the centers are determined by $k$--means clustering and the weights are found using error backpropagation. We consider three machines, namely a classical RBF machine, an SV machine with Gaussian kernel, and a hybrid system with the centers determined by the SV method and the weights trained by error backpropagation. Our results show that on the US postal service database of handwritten digits, the SV machine achieves the highest test accuracy, followed by the hybrid approach. The SV approach is thus not only theoretically well--founded, but also superior in a practical application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Impressive claims have been made for the performance of the SNoW algorithm on face detection tasks by Yang et. al. [7]. In particular, by looking at both their results and those of Heisele et. al. [3], one could infer that the SNoW system performed substantially better than an SVM-based system, even when the SVM used a polynomial kernel and the SNoW system used a particularly simplistic 'primitive' linear representation. We evaluated the two approaches in a controlled experiment, looking directly at performance on a simple, fixed-sized test set, isolating out 'infrastructure' issues related to detecting faces at various scales in large images. We found that SNoW performed about as well as linear SVMs, and substantially worse than polynomial SVMs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Support Vector Machine (SVM) is a new and very promising classification technique developed by Vapnik and his group at AT&T Bell Labs. This new learning algorithm can be seen as an alternative training technique for Polynomial, Radial Basis Function and Multi-Layer Perceptron classifiers. An interesting property of this approach is that it is an approximate implementation of the Structural Risk Minimization (SRM) induction principle. The derivation of Support Vector Machines, its relationship with SRM, and its geometrical insight, are discussed in this paper. Training a SVM is equivalent to solve a quadratic programming problem with linear and box constraints in a number of variables equal to the number of data points. When the number of data points exceeds few thousands the problem is very challenging, because the quadratic form is completely dense, so the memory needed to store the problem grows with the square of the number of data points. Therefore, training problems arising in some real applications with large data sets are impossible to load into memory, and cannot be solved using standard non-linear constrained optimization algorithms. We present a decomposition algorithm that can be used to train SVM's over large data sets. The main idea behind the decomposition is the iterative solution of sub-problems and the evaluation of, and also establish the stopping criteria for the algorithm. We present previous approaches, as well as results and important details of our implementation of the algorithm using a second-order variant of the Reduced Gradient Method as the solver of the sub-problems. As an application of SVM's, we present preliminary results we obtained applying SVM to the problem of detecting frontal human faces in real images.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the optimization problem of safety stock placement in a supply chain, as formulated in [1]. We prove that this problem is NP-Hard for supply chains modeled as general acyclic networks. Thus, we do not expect to find a polynomial-time algorithm for safety stock placement for a general-network supply chain.