966 resultados para Non-destructive methods


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Among various optical sensing schemes, infrared spectroscopy is a powerful tool for detecting and determining the composition of complex organic samples since vibrational finger prints of all biomolecules and organic species are located in this window. This spectroscopic technique is simple, reliable, fast, non-destructive, cost-effective while having low sensitivity. Use of metallic nanoparticles in association with a good IR transparent sensing substrate, is one of the promising solutions to enhance the sensitivity. Chalcogenide glasses are promising substrate material because of their extended optical transmission window starting from the visible to the far infrared range up to 20 μm, high refractive index usually between 2 and 3 and high optical nonlinearity, which make them good candidates as IR sensors and optical ultrafast nonlinear devices. These glasses are favorable sensor materials for the infrared spectral range because of their high IR transparency to allow for low optical loss at wavelengths corresponding to the characteristic optical absorption bands of organic molecules, high refractive index for tight confinement of optical energy within the resonator structure, processibility into thin film form, chemical compatibility for adhesion of silver nano particles and thin films and resistance to the chemical environment to be sensed. Molecules adsorbed to silver island structures shows enhanced IR absorption spectra and the extent of enhancement is determined by many factors such as the size, density and morphology of silver structures, optical and dielectric properties of the substrate material etc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cette recherche part d’un double intérêt. Pour la spiritualité, dont on entend beaucoup parler dans un 21e siècle inquiet et en quête de nouveaux repères. Et pour le cinéma, ou 7e art, phénomène culturel phare des temps modernes, qui reflète abondamment les problématiques et questionnements du monde. À une époque où on observe une tendance à l’homogénéisation culturelle, résultat de la mondialisation économique, cette thèse traite du « cinéma transnational ». Elles aussi, les œuvres de ce cinéma traversent l’espace planétaire, mais tout en conservant un solide ancrage local et une singularité artistique. Ce sont en bonne partie les films que l’on retrouve dans les festivals internationaux, tels Cannes, Venise et Berlin. Le cinéma traduisant toutes les interrogations possibles du présent, plusieurs films apparaissent donc porteurs d’un questionnement à portée spirituelle. Et ce, avec des moyens non discursifs, propres à l’art cinématographique. Ils invitent aussi à la rencontre de l’autre. L’objectif de la thèse consiste à décrire comment, par l’analyse d’une douzaine de films transnationaux, on peut dégager de nouveaux concepts sur la façon avec laquelle se vit la spiritualité à notre époque, en relation avec l’autre, et pourquoi cette spiritualité s’accompagne nécessairement de considérations éthiques. Pour accomplir cette tâche, la thèse s’appuie sur les travaux de deux philosophes, Gilles Deleuze (France) et Stanley Cavell (États-Unis), qui ont marqué les études cinématographiques au cours des dernières décennies, par des approches jugées complémentaires pour cette recherche. Le premier a développé sa pensée à partir de ce qui distingue le cinéma des autres arts, et le second, à partir de l’importance du cinéma pour les spectateurs et les spectatrices. Enfin, la thèse se veut une théologie, ou pensée théologico-philosophique, indépendante d’une tradition religieuse et au diapason des réalités du 21e siècle.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ultrasonic non-destructive testing of components may encounter considerable difficulties to interpret some inspections results mainly in anisotropic crystalline structures. A numerical method for the simulation of elastic wave propagation in homogeneous elastically anisotropic media, based on the general finite element approach, is used to help this interpretation. The successful modeling of elastic field associated with NDE is based on the generation of a realistic pulsed ultrasonic wave, which is launched from a piezoelectric transducer into the material under inspection. The values of elastic constants are great interest information that provide the application of equations analytical models, until small and medium complexity problems through programs of numerical analysis as finite elements and/or boundary elements. The aim of this work is the comparison between the results of numerical solution of an ultrasonic wave, which is obtained from transient excitation pulse that can be specified by either force or displacement variation across the aperture of the transducer, and the results obtained from a experiment that was realized in an aluminum block in the IEN Ultrasonic Laboratory. The wave propagation can be simulated using all the characteristics of the material used in the experiment evaluation associated to boundary conditions and from these results, the comparison can be made.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ceramic materials have been widely used for various purposes in many different industries due to certain characteristics, such as high melting point and high resistance to corrosion. In the nuclear area, ceramics are of great importance due to the process of fabrication of fuel pellets for nuclear reactors. Generally, high accuracy destructive techniques are used to characterize nuclear materials for fuel fabrication. These techniques usually require costly equipment and facilities, as well as experienced personnel. This paper aims at presenting an analysis methodology for UO2 pellets using a non-destructive ultrasonic technique for porosity measurement. This technique differs from traditional ultrasonic techniques in the sense it uses ultrasonic pulses in frequency domain instead of time domain. Therefore, specific characteristics of the analyzed material are associated with the obtained frequency spectrum. In the present work, four fuel grade UO2 pellets were analyzed and the corresponding results evaluated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ceramic materials have been widely used for various purposes in many different industries due to certain characteristics, such as high melting point and high resistance to corrosion. Concerning the areas of applications, automobile, aeronautics, naval and even nuclear, the characteristics of these materials should be strictly controlled. In the nuclear area, ceramics are of great importance once they are the nuclear fuel pellets and must have, among other features, a well controlled porosity due to mechanical strength and thermal conductivity required by the application. Generally, the techniques used to characterize nuclear fuel are destructive and require costly equipment and facilities. This paper aims to present a nondestructive technique for ceramic characterization using ultrasound. This technique differs from other ultrasonic techniques because it uses ultrasonic pulse in frequency domain instead of time domain, associating the characteristics of the analyzed material with its frequency spectrum. In the present work, 40 Alumina (Al2O3) ceramic pellets with porosities ranging from 5% to 37%, in absolute terms measured by Archimedes technique, were tested. It can be observed that the frequency spectrum of each pellet varies according to its respective porosity and microstructure, allowing a fast and non-destructive association of the same characteristics with the same spectra pellets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of polymeric membranes is extremely important in several industries such as nuclear, biotechnology, chemical and pharmaceutical. In the nuclear area, for instance, systems based on membrane separation technologies are currently being used in the treatment of radioactive liquid effluent, and new technologies using membranes are being developed at a great rate. The knowledge of the physical characteristics of these membranes, such as, pore size and the pore size distribution, is very important to the membranes separation processes. Only after these characteristics are known is it possible to determine the type and to choose a particular membrane for a specific application. In this work, two ultrasonic non destructive techniques were used to determine the porosity of membranes: pulse echo and transmission. A 25 MHz immersion transducer was used. Ultrasonic signals were acquired, for both techniques, after the ultrasonic waves passed through a microfiltration polymeric membrane of pore size of 0.45 μm and thickness of 180 μm. After the emitted ultrasonic signal crossed the membrane, the received signal brought several information on the influence of the membrane porosity in the standard signal of the ultrasonic wave. The ultrasonic signals were acquired in the time domain and changed to the frequency domain by application of the Fourier Fast Transform (FFT), thus generating the material frequency spectrum. For the pulse echo technique, the ultrasonic spectrum frequency changed after the ultrasonic wave crossed the membrane. With the transmission technique there was only a displacement of the ultrasonic signal at the time domain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In industrial plants, oil and oil compounds are usually transported by closed pipelines with circular cross-section. The use of radiotracers in oil transport and processing industrial facilities allows calibrating flowmeters, measuring mean residence time in cracking columns, locate points of obstruction or leak in underground ducts, as well as investigating flow behavior or industrial processes such as in distillation towers. Inspection techniques using radiotracers are non-destructive, simple, economic and highly accurate. Among them, Total Count, which uses a small amount of radiotracer with known activity, is acknowledged as an absolute technique for flow rate measurement. A viscous fluid transport system, composed by four PVC pipelines with 13m length (12m horizontal and 1m vertical) and ½, ¾, 1 and 2-inch gauges, respectively, interconnected by maneuvering valves was designed and assembled in order to conduct the research. This system was used to simulate different flow conditions of petroleum compounds and for experimental studies of flow profile in the horizontal and upward directions. As 198Au presents a single photopeak (411,8 keV), it was the radioisotope chosen for oil labeling, in small amounts (6 ml) or around 200 kBq activity, and it was injected in the oil transport lines. A NaI scintillation detector 2”x 2”, with well-defined geometry, was used to measure total activity, determine the calibration factor F and, positioned after a homogenization distance and interconnected to a standardized electronic set of nuclear instrumentation modules (NIM), to detect the radioactive cloud.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract : The structural build-up of fresh cement-based materials has a great impact on their structural performance after casting. Accordingly, the mixture design should be tailored to adapt the kinetics of build-up given the application on hand. The rate of structural build-up of cement-based suspensions at rest is a complex phenomenon affected by both physical and chemical structuration processes. The structuration kinetics are strongly dependent on the mixture’s composition, testing parameters, as well as the shear history. Accurate measurements of build-up rely on the efficiency of the applied pre-shear regime to achieve an initial well-dispersed state as well as the applied stress during the liquid-solid transition. Studying the physical and chemical mechanisms of build-up of cement suspensions at rest can enhance the fundamental understanding of this phenomenon. This can, therefore, allow a better control of the rheological and time-dependent properties of cement-based materials. The research focused on the use of dynamic rheology in investigating the kinetics of structural build-up of fresh cement pastes. The research program was conducted in three different phases. The first phase was devoted to evaluating the dispersing efficiency of various disruptive shear techniques. The investigated shearing profiles included rotational, oscillatory, and combination of both. The initial and final states of suspension’s structure, before and after disruption, were determined by applying a small-amplitude oscillatory shear (SAOS). The difference between the viscoelastic values before and after disruption was used to express the degree of dispersion. An efficient technique to disperse concentrated cement suspensions was developed. The second phase aimed to establish a rheometric approach to dissociate and monitor the individual physical and chemical mechanisms of build-up of cement paste. In this regard, the non-destructive dynamic rheometry was used to investigate the evolutions of both storage modulus and phase angle of inert calcium carbonate and cement suspensions. Two independent build-up indices were proposed. The structural build-up of various cement suspensions made with different cement contents, silica fume replacement percentages, and high-range water reducer dosages was evaluated using the proposed indices. These indices were then compared to the well-known thixotropic index (Athix.). Furthermore, the proposed indices were correlated to the decay in lateral pressure determined for various cement pastes cast in a pressure column. The proposed pre-shearing protocol and build-up indices (phases 1 and 2) were then used to investigate the effect of mixture’s parameters on the kinetics of structural build-up in phase 3. The investigated mixture’s parameters included cement content and fineness, alkali sulfate content, and temperature of cement suspension. Zeta potential, calorimetric, spectrometric measurements were performed to explore the corresponding microstructural changes in cement suspensions, such as inter-particle cohesion, rate of Brownian flocculation, and nucleation rate. A model linking the build-up indices and the microstructural characteristics was developed to predict the build-up behaviour of cement-based suspensions The obtained results showed that oscillatory shear may have a greater effect on dispersing concentrated cement suspension than the rotational shear. Furthermore, the increase in induced shear strain was found to enhance the breakdown of suspension’s structure until a critical point, after which thickening effects dominate. An effective dispersing method is then proposed. This consists of applying a rotational shear around the transitional value between the linear and non-linear variations of the apparent viscosity with shear rate, followed by an oscillatory shear at the crossover shear strain and high angular frequency of 100 rad/s. Investigating the evolutions of viscoelastic properties of inert calcite-based and cement suspensions and allowed establishing two independent build-up indices. The first one (the percolation time) can represent the rest time needed to form the elastic network. On the other hand, the second one (rigidification rate) can describe the increase in stress-bearing capacity of formed network due to cement hydration. In addition, results showed that combining the percolation time and the rigidification rate can provide deeper insight into the structuration process of cement suspensions. Furthermore, these indices were found to be well-correlated to the decay in the lateral pressure of cement suspensions. The variations of proposed build-up indices with mixture’s parameters showed that the percolation time is most likely controlled by the frequency of Brownian collisions, distance between dispersed particles, and intensity of cohesion between cement particles. On the other hand, a higher rigidification rate can be secured by increasing the number of contact points per unit volume of paste, nucleation rate of cement hydrates, and intensity of inter-particle cohesion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bakgrund: Demens är en progressiv sjukdom och antalet personer som får en demensdiagnos kommer inom några årtionden öka drastiskt. Sjukvården behöver komma fram med nya icke-farmakologiska metoder för att kunna hantera den stora ökningen av personer med demenssjukdom. Syfte: Syftet var att beskriva om och på vilket sätt musiken påverkar personer med demens. Metod: Litteraturöversikt med induktiv ansats där artiklar med kvalitativ och kvantitativ metodik sammanställdes. Artikelsökning gjordes i databaserna Cinahl samt PsychInfo. De kvalitativa artiklarna analyserades med hjälp av Fribergs femstegsmodell och statistiken från de kvantitativa artiklarna sammanställdes i en tabell. Resultat: Det kvantitativa resultatet visade att musik hade en effekt med statistiskt signifikant skillnad på flera av de undersökta variablerna. Agitation och oro/ ångest minskade medan positivt engagemang/ deltagande ökade. Det kvalitativa resultatet genererade tre teman: kommunikation, sinnesstämning samt indirekt påverkan. Kommunikationen förbättrades, personer med demens upplevde glädje och personalen påverkades positivt av musiken vilket ledde till indirekt påverkan på personer med demens. Slutsats: Musik är en enkel och kostnadseffektiv intervention att använda sig av när det gäller personer med demens. Olika musikinterventioner kan användas vid olika situationer för att få den effekt som önskas. Det är även ett enkelt sätt att komma personer med demens närmare och få en större förståelse.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There appears to be a limited but growing body of research on the sequential analysis/treatment of multiple types of evidence. The development of an integrated forensic approach is necessary to maximise evidence recovery and to ensure that a particular treatment is not detrimental to other types of evidence. This study aims to assess the effect of latent and blood mark enhancement techniques (e.g. fluorescence, ninhydrin, acid violet 17, black iron-oxide powder suspension) on the subsequent detection of saliva. Saliva detection was performed by means of a presumptive test (Phadebas®) in addition to analysis by a rapid stain identification (RSID) kit test and confirmatory DNA testing. Additional variables included a saliva depletion series and a number of different substrates with varying porosities as well as different ageing periods. Examination and photography under white light and fluorescence was carried out prior to and after chemical enhancement All enhancement techniques (except Bluestar® Forensic Magnum luminol) employed in this study resulted in an improved visualisation of the saliva stains, although the inherent fluorescence of saliva was sometimes blocked after chemical treatment. The use of protein stains was, in general, detrimental to the detection of saliva. Positive results were less pronounced after the use of black iron-oxide powder suspension, cyanoacrylate fuming followed by BY40 and ninhydrin when compared to the respective positive controls. The application of Bluestar® Forensic Magnum luminol and black magnetic powder proved to be the least detrimental, with no significant difference between the test results and the positive controls. The use of non-destructive fluorescence examination provided good visualisation; however, only the first few marks in the depletion were observed. Of the samples selected for DNA analysis only depletion 1 samples contained sufficient DNA quantity for further processing using standard methodology. The 28 day delay between sample deposition and collection resulted in a 5-fold reduction in the amount of useable DNA. When sufficient DNA quantities were recovered, enhancement techniques did not have a detrimental effect on the ability to generate DNA profiles. This study aims to contribute to a strategy for maximising evidence recovery and efficiency for the detection of latent marks and saliva. The results demonstrate that most of the enhancement techniques employed in this study were not detrimental to the subsequent detection of saliva by means of presumptive, confirmative and DNA tests.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Esta dissertação é composta por 5 artigos.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A lean muscle line (L) and a fat muscle line (F) of rainbow trout were established (Quillet et al., 2005) by a two-way selection for muscle lipid content performed on pan-size rainbow trout using a non-destructive measurement of muscle lipid content (Distell Fish Fat Meter®). The aim of the present study was to evaluate the consequences of this selective breeding on flesh quality of pan size (290 g) diploid and triploid trout after three generations of selection. Instrumental evaluations of fillet color and pH measurement were performed at slaughter. Flesh color, pH, dry matter content and mechanical resistance were measured at 48 h and 96 h postmortem on raw and cooked flesh, respectively. A sensorial profile analysis was performed on cooked fillets. Fillets from the selected fatty muscle line (F) had a higher dry matter content and were more colorful for both raw and cooked fillets. Mechanical evaluation indicated a tendency of raw flesh from F fish to be less firm, but this was not confirmed after cooking, neither instrumentally or by sensory analysis. The sensory analysis revealed higher fat loss, higher intensity of flavor of cooked potato, higher exudation, higher moisture content and a more fatty film left on the tongue for flesh from F fish. Triploid fish had mechanically softer raw and cooked fillets, but the difference was not perceived by the sensorial panel. The sensorial evaluation also revealed a lower global intensity of odor, more exudation and a higher moisture content in the fillets from triploid fish. These differences in quality parameters among groups of fish were associated with larger white muscle fibers in F fish and in triploid fish. The data provide additional information about the relationship between muscle fat content, muscle cellularity and flesh quality.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High-throughput techniques are necessary to efficiently screen potential lignocellulosic feedstocks for the production of renewable fuels, chemicals, and bio-based materials, thereby reducing experimental time and expense while supplanting tedious, destructive methods. The ratio of lignin syringyl (S) to guaiacyl (G) monomers has been routinely quantified as a way to probe biomass recalcitrance. Mid-infrared and Raman spectroscopy have been demonstrated to produce robust partial least squares models for the prediction of lignin S/G ratios in a diverse group of Acacia and eucalypt trees. The most accurate Raman model has now been used to predict the S/G ratio from 269 unknown Acacia and eucalypt feedstocks. This study demonstrates the application of a partial least squares model composed of Raman spectral data and lignin S/G ratios measured using pyrolysis/molecular beam mass spectrometry (pyMBMS) for the prediction of S/G ratios in an unknown data set. The predicted S/G ratios calculated by the model were averaged according to plant species, and the means were not found to differ from the pyMBMS ratios when evaluating the mean values of each method within the 95 % confidence interval. Pairwise comparisons within each data set were employed to assess statistical differences between each biomass species. While some pairwise appraisals failed to differentiate between species, Acacias, in both data sets, clearly display significant differences in their S/G composition which distinguish them from eucalypts. This research shows the power of using Raman spectroscopy to supplant tedious, destructive methods for the evaluation of the lignin S/G ratio of diverse plant biomass materials. © 2015, The Author(s).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ultrasonic tomography is a powerful tool for identifying defects within an object or structure. This method can be applied on structures where x-ray tomography is impractical due to size, low contrast, or safety concerns. By taking many ultrasonic pulse velocity (UPV) readings through the object, an image of the internal velocity variations can be constructed. Air-coupled UPV can allow for more automated and rapid collection of data for tomography of concrete. This research aims to integrate recent developments in air-coupled ultrasonic measurements with advanced tomography technology and apply them to concrete structures. First, non-contact and semi-contact sensor systems are developed for making rapid and accurate UPV measurements through PVC and concrete test samples. A customized tomographic reconstruction program is developed to provide full control over the imaging process including full and reduced spectrum tomographs with percent error and ray density calculations. Finite element models are also used to determine optimal measurement configurations and analysis procedures for efficient data collection and processing. Non-contact UPV is then implemented to image various inclusions within 6 inch (152 mm) PVC and concrete cylinders. Although there is some difficulty in identifying high velocity inclusions, reconstruction error values were in the range of 1.1-1.7% for PVC and 3.6% for concrete. Based upon the success of those tests, further data are collected using non-contact, semi-contact, and full contact measurements to image 12 inch (305 mm) square concrete cross-sections with 1 inch (25 mm) reinforcing bars and 2 inch (51 mm) square embedded damage regions. Due to higher noise levels in collected signals, tomographs of these larger specimens show reconstruction error values in the range of 10-18%. Finally, issues related to the application of these techniques to full-scale concrete structures are discussed.