958 resultados para Nitrogen and phosphorous loading


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 1:1 condensation of N-methyl-1,3-diaminopropane and N,N-diethyl-1,2-diminoethane with 2-acetylpyridine, respectively at high dilution gives the tridentate mono-condensed Schiff bases N-methyl-N'-(1-pyridin-2-yl-ethylidene)-propane-1,3-diamine (L-1) and N,N-diethyl-N'-(1-pyridin-2-yl-ethylidene)-ethane-1,2-diamine (L-2). The tridentate ligands were allowed to react with methanol solutions of nickel(II) thiocyanate to prepare the complexes [Ni(L-1)(SCN)(2)(OH2) (1) and [{Ni(L-2)(SCN)}(2)] (2). Single crystal X-ray diffraction was used to confirm the structures of the complexes. The nickel(II) in complex 1 is bonded to three nitrogen donor atoms of the ligand L-1 in a mer orientation, together with two thiocyanates bonded through nitrogen and a water molecule, and it is the first Schiff base complex of nickel(II) containing both thiocyanate and coordinated water. The coordinated water initiates a hydrogen bonded 2D network. In complex 2, the nickel ion occupies a slightly distorted octahedral coordination sphere, being bonded to three nitrogen atoms from the ligand L-2, also in a mer orientation, and two thiocyanate anions through nitrogen. In contrast to 1, the sixth coordination site is occupied by a sulfur atom from a thiocyanate anion in an adjacent molecule, thus creating a centrosymmetric dimer. A variable temperature magnetic study of complex 2 indicates the simultaneous presence of zero-field splitting, weak intramolecular ferromagnetic coupling and intermolecular antiferromagnetic interactions between the nickel(II) centers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A significant challenge in the prediction of climate change impacts on ecosystems and biodiversity is quantifying the sources of uncertainty that emerge within and between different models. Statistical species niche models have grown in popularity, yet no single best technique has been identified reflecting differing performance in different situations. Our aim was to quantify uncertainties associated with the application of 2 complimentary modelling techniques. Generalised linear mixed models (GLMM) and generalised additive mixed models (GAMM) were used to model the realised niche of ombrotrophic Sphagnum species in British peatlands. These models were then used to predict changes in Sphagnum cover between 2020 and 2050 based on projections of climate change and atmospheric deposition of nitrogen and sulphur. Over 90% of the variation in the GLMM predictions was due to niche model parameter uncertainty, dropping to 14% for the GAMM. After having covaried out other factors, average variation in predicted values of Sphagnum cover across UK peatlands was the next largest source of variation (8% for the GLMM and 86% for the GAMM). The better performance of the GAMM needs to be weighed against its tendency to overfit the training data. While our niche models are only a first approximation, we used them to undertake a preliminary evaluation of the relative importance of climate change and nitrogen and sulphur deposition and the geographic locations of the largest expected changes in Sphagnum cover. Predicted changes in cover were all small (generally <1% in an average 4 m2 unit area) but also highly uncertain. Peatlands expected to be most affected by climate change in combination with atmospheric pollution were Dartmoor, Brecon Beacons and the western Lake District.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Co(NH3)(5)Cl]Cl-2 forms neutral 1:3 complex by reaction with aromatic thiohydrazides, i.e. thiobenzhydrazide, o-hydroxythiobenzhydrazide, thiophen-2-thiohydrazide and furan-2-thiohydrazide. All these complexes are diamagnetic and have been characterized by elemental analysis and combination of spectroscopic methods. Cyclic voltammometry of the complexes shows irreversible metal centered and ligand centered electron transfer reactions. One complex, tris-o-hydroxythiobenzhydrazidocobalt(III),has been crystallized from DMSO solution to produce solvated crystals and its structure has been established by X-ray crystallography. Cobalt(III) ion is linked through three hydrazinic nitrogen and three sulfur atoms of three identical deprotonated ligand molecules in a distorted octahedral environment. Involvement of -OH group in intramolecular and intermolecular hydrogen bonding is crucial for crystal formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two new reduced Schiff base ligands, [HL1 = 4-(2-[(pyridin-2-ylmethyl)-amino]-ethylimino)-pentan-2-one and HL2 =4-[2-(1-pyridin-2-yl-ethylamino)-ethylimino]-pentan-2-one] have been prepared by reduction of the corresponding tetradentate unsymmetrical schiff bases derived from 1.1: 1 condensation of 1,2-ethanediamine, acetylacetone and pyridine-2-carboxaldehyde/2-acetyl pyridine. Four complexes, [Ni(L-1)]ClO4 (1), [Cu(L-1)]ClO4 (2). [Ni(L-2)]ClO4 (3). and [Cu(L-2)]ClO4 (4) with these two reduced Schiff base ligands have been synthesized and structurally characterized by X-ray crystallography. The mono-negative ligands L-1 and L-2 are chelated in all four complexes through the four donor atoms to form square planar nickel(II) and copper(II) complexes Structures of 3 and 4 reveal that enantiomeric pairs are crystallized together with opposite chirality in the nitrogen and carbon atoms. The two Cu-II complexes (2 and 4) exhibit both irreversible reductive (Cu-II/Cu-II, E-pc. -1.00 and -1.04 V) and oxidative (Cu-II/CUII, E-pa, + 1.22 and + 1.17 V, respectively) responses in cyclic voltammetry. The electrochemically generated Cu-1 species for both the complexes are unstable and undergo disproportionation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During spray drying, emphasis is placed on process optimisation to generate favourable particle morphological and flow properties. The effect of the initial feed solution composition on the drug release from the prepared microparticles is rarely considered. We investigated the effects of solvent composition, feed solution concentration and drug-loading on sodium salicylate, hydrocortisone and triamcinolone release from spray dried Eudragit L100 microparticles. Eudragit L100 is a pH-responsive polymer whose dissolution threshold is pH 6 so dissolution testing of the prepared microparticles at pH 5 and 1.2 illustrated non-polymer controlled burst release. Increasing the water content of the initial ethanolic feed solution significantly reduced hydrocortisone burst release at pH 5, as did reducing the feed solution concentration. These findings caution that changes in feed solution concentration or solvent composition not only affect particles’ morphological characteristics but can also negatively alter their drug release properties. This work also illustrate that drug-free microparticles can have different morphological properties to drug-loaded microparticles. Therefore, process optimisation needs to be carried out using drug-loaded systems. Depending on the physicochemical properties of the encapsulated API, drug-loading can affect the polymer solubility in the initial feed solution with consequent impact on microparticles morphological and release properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2-[Methyl(2-methylphenyl)amino]ethanol undergoes an ortho-alkyllithiation reaction with n-butyllithium to lead to a new mixed benzyllithium−lithium alkoxide. This organolithium species reacts with PPh2Cl, with selective P−C bond formation, to afford the ligand 2-[methyl(2-((diphenylphosphino)methyl)phenyl)amino]ethanol L1. The coordination of the ligand L1 to copper(I) leads to the complex [Cu(L1)2](BF4), whose structure has been determined by an X-ray diffraction study. In the solid state, one of the ligands acts as a monodentate phosphine while the other adopts a tridentate P,N,O coordination mode. A variable-temperature 31P NMR study demonstrated the existence of an equilibrium between the two modes in solution, with a coalescence temperature of ca. 0 °C, indicating a double-hemilabile behavior for the nitrogen and the oxygen functions. L1 reacts with [Pd(Me)(Cl)(COD)] to give a dinuclear complex in which the ligand appears to behave as a bridging anionic P,O ligand. Such a complex could serve as a model for a key intermediate in the proposed mechanism for the homogeneous catalysis of the methoxycarbonylation of propyne by certain palladium(II) complexes containing P,N ligands. L1 can undergo a second ortho-alkylmetalation reaction with n-butyllithium which, after addition of PPh2Cl, provides the new ligand 2-{methyl[2-(bis(diphenylphosphino)methyl)phenyl]amino}ethanol (L2) in high yield.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research on arable sandy loam and silty clay loam soils on 4° slopes in England has shown that tramlines (i.e. the unseeded wheeling areas used to facilitate spraying operations in cereal crops) can represent the most important pathway for phosphorus and sediment loss from moderately sloping fields. Detailed monitoring over the October–March period in winters 2005–2006 and 2006–2007 included event-based sampling of surface runoff, suspended and particulate sediment, and dissolved and particulate phosphorus from hillslope segments (each ∼300–800 m2) established in a randomized block design with four replicates of each treatment at each of two sites on lighter and heavier soils. Experimental treatments assessed losses from the cropped area without tramlines, and from the uncropped tramline area, and were compared to losses from tramlines which had been disrupted once in the autumn with a shallow tine. On the lighter soil, the effects of removal or shallow incorporation of straw residues was also determined. Research on both sandy and silty clay loam soils across two winters showed that tramline wheelings represented the dominant pathway for surface runoff and transport of sediment, phosphorus and nitrogen from cereal crops on moderate slopes. Results indicated 5·5–15·8% of rainfall lost as runoff, and losses of 0·8–2·9 kg TP ha−1 and 0·3–4·8 t ha−1 sediment in tramline treatments, compared to only 0·2–1·7% rainfall lost as runoff, and losses of 0·0–0·2 kg TP ha−1 and 0·003–0·3 t ha−1 sediment from treatments without tramlines or those where tramlines had been disrupted. The novel shallow disruption of tramline wheelings using a tine once following the autumn spray operation consistently and dramatically reduced (p < 0·001) surface runoff and loads of sediment, total nitrogen and total phosphorus to levels similar to those measured in cropped areas between tramlines. Results suggest that options for managing tramline wheelings warrant further refinement and evaluation with a view to incorporating them into spatially-targeted farm-level management planning using national or catchment-based agri-environment policy instruments aimed at reducing diffuse pollution from land to surface water systems. Copyright © 2010 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The contribution from agricultural catchments to stream nitrogen and phosphorus concentrations was assessed by evaluation of the chemical composition of these nutrients in agricultural runoff for both surface and subsurface flow pathways. A range of land uses (grazed and ungrazed grassland, cereals, roots) in intensive agricultural systems was studied at scales from hillslope plots (0.5m2) to large catchment (>300km2). By fractionating the total nutrient load it was possible to establish that most of the phosphorus was transported in the unreactive (particulate and organic) fraction via surface runoff. This was true regardless of the scale of measurement. The form of the nitrogen load varied with land use and grazing intensity. High loads of dissolved inorganic nitrogen (with >90% transported as NH4-N) were recorded in surface runoff from heavily grazed land. In subsurface flow from small (2km2) subcatchments and in larger (>300 km2) catchments, organic nitrogen was found to be an important secondary constituent of the total nitrogen load, comprising 40% of the total annual load.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We evaluated the accuracy of six watershed models of nitrogen export in streams (kg km2 yr−1) developed for use in large watersheds and representing various empirical and quasi-empirical approaches described in the literature. These models differ in their methods of calibration and have varying levels of spatial resolution and process complexity, which potentially affect the accuracy (bias and precision) of the model predictions of nitrogen export and source contributions to export. Using stream monitoring data and detailed estimates of the natural and cultural sources of nitrogen for 16 watersheds in the northeastern United States (drainage sizes = 475 to 70,000 km2), we assessed the accuracy of the model predictions of total nitrogen and nitrate-nitrogen export. The model validation included the use of an error modeling technique to identify biases caused by model deficiencies in quantifying nitrogen sources and biogeochemical processes affecting the transport of nitrogen in watersheds. Most models predicted stream nitrogen export to within 50% of the measured export in a majority of the watersheds. Prediction errors were negatively correlated with cultivated land area, indicating that the watershed models tended to over predict export in less agricultural and more forested watersheds and under predict in more agricultural basins. The magnitude of these biases differed appreciably among the models. Those models having more detailed descriptions of nitrogen sources, land and water attenuation of nitrogen, and water flow paths were found to have considerably lower bias and higher precision in their predictions of nitrogen export.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reaction of salicylaldehyde semicarbazone (L-1), 2-hydroxyacetophenone semicarbazone (L-2), and 2-hydroxynaphthaldehyde semicarbazone (L-3) with [Pd(PPh3)(2)Cl-2] in ethanol in the presence of a base (NEt3) affords a family of yellow complexes (1a, 1b and 1c, respectively). In these complexes the semicarbazone ligands are coordinated to palladium in a rather unusual tridentate ONN-mode, and a PPh3 also remains coordinated to the metal center. Crystal structures of the 1b and 1c complexes have been determined, and structure of 1a has been optimized by a DFT method. In these complexes two potential donor sites of the coordinated semicarbazone, viz. the hydrazinic nitrogen and carbonylic oxygen, remain unutilized. Further reaction of these palladium complexes (1a, 1b and 1c) with [Ru(PPh3)(2)(CO)(2)Cl-2] yields a family of orange complexes (2a, 2b and 2c, respectively). In these heterodinuclear (Pd-Ru) complexes, the hydrazinic nitrogen (via dissociation of the N-H proton) and the carbonylic oxygen from the palladium-containing fragment bind to the ruthenium center by displacing a chloride and a carbonyl. Crystal structures of 2a and 2c have been determined, and the structure of 2b has been optimized by a DFT method. All the complexes show characteristic H-1 NMR spectra and, intense absorptions in the visible and ultraviolet region. Cyclic voltammetry on all the complexes shows an irreversible oxidation of the coordinated semicarbazone within 0.86-0.93 V vs. SCE, and an irreversible reduction of the same ligand within -0.96 to -1.14 V vs. SCE. Both the mononuclear (1a, 1b and 1c) and heterodinuclear (2a, 2b and 2c) complexes are found to efficiently catalyze Suzuki, Heck and Sonogashira type C-C coupling reactions utilizing a variety of aryl bromides and aryl chlorides. The Pd-Ru complexes (2a, 2b and 2c) are found to be better catalysts than the Pd complexes (1a, 1b and 1c) for Suzuki and Heck coupling reactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acrylamide is a probable human carcinogen that forms in plant-derived foods when free asparagine and reducing sugars react at high temperatures. The identification of rye varieties with low acrylamide-forming potential or agronomic conditions that produce raw material with low acrylamide precursor concentrations would reduce the acrylamide formed in baked rye foods without the need for additives or potentially costly changes to processes. This work compared five commercial rye varieties grown under a range of fertilisation regimes to investigate the effects of genotype and nutrient (nitrogen and sulphur) availability on the accumulation of acrylamide precursors. A strong correlation was established between the free asparagine concentration of grain and the acrylamide formed upon heating. The five rye varieties accumulated different concentrations of free asparagine in the grain, indicating that there is genetic control of this trait and that variety selection could be useful in reducing acrylamide levels in rye products. High levels of nitrogen fertilisation were found to increase the accumulation of free asparagine, showing that excessive nitrogen application should be avoided in order not to exacerbate the problem of acrylamide formation. This effect of nitrogen was mitigated in two of the varieties by the application of sulphur.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The starchy endosperm is the major storage tissue in the mature wheat grain and exhibits quantitative and qualitative gradients in composition, with the outermost cell layers being rich in protein, mainly gliadins, and the inner cells being low in protein but enriched in high-molecular-weight (HMW) subunits of glutenin. We have used sequential pearling to produce flour fractions enriched in particular cell layers to determine the protein gradients in four different cultivars grown at two nitrogen levels. The results show that the steepness of the protein gradient is determined by both genetic and nutritional factors, with three high-protein breadmaking cultivars being more responsive to the N treatment than a low-protein cultivar suitable for livestock feed. Nitrogen also affected the relative abundances of the three main classes of wheat prolamins: the sulfur-poor ω-gliadins showed the greatest response to nitrogen and increased evenly across the grain; the HMW subunits also increased in response to nitrogen but proportionally more in the outer layers of the starchy endosperm than near the core, while the sulfur-rich prolamins showed the opposite trend.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soils are subject to varying degrees of direct or indirect human disturbance, constituting a major global change driver. Factoring out natural from direct and indirect human influence is not always straightforward, but some human activities have clear impacts. These include land use change, land management, and land degradation (erosion, compaction, sealing and salinization). The intensity of land use also exerts a great impact on soils, and soils are also subject to indirect impacts arising from human activity, such as acid deposition (sulphur and nitrogen) and heavy metal pollution. In this critical review, we report the state-of-the-art understanding of these global change pressures on soils, identify knowledge gaps and research challenges, and highlight actions and policies to minimise adverse environmental impacts arising from these global change drivers. Soils are central to considerations of what constitutes sustainable intensification. Therefore, ensuring that vulnerable and high environmental value soils are considered when protecting important habitats and ecosystems, will help to reduce the pressure on land from global change drivers. To ensure that soils are protected as part of wider environmental efforts, a global soil resilience programme should be considered, to monitor, recover or sustain soil fertility and function, and to enhance the ecosystem services provided by soils. Soils cannot, and should not, be considered in isolation of the ecosystems that they underpin and vice versa. The role of soils in supporting ecosystems and natural capital needs greater recognition. The lasting legacy of the International Year of Soils in 2015 should be to put soils at the centre of policy supporting environmental protection and sustainable development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pastures often experience a pulse of phosphorus (P) when fertilized. We examined the role of arbuscular mycorrhizal fungi (AMF) in the uptake of P from a pulse. Five legumes (Kennedia prostrata, Cullen australasicum, Bituminaria bituminosa, Medicago sativa and Trifolium subterraneum) were grown in a moderate P, sterilized field soil, either with (+AMF) or without (−AMF) addition of unsterilized field soil. After 9–10 weeks, half the pots received 15 mg P kg−1 of soil. One week later, we measured: shoot and root dry weights; percentage of root length colonized by AMF; plant P, nitrogen and manganese (Mn) concentrations; and rhizosphere carboxylates, pH and plant-available P. The P pulse raised root P concentration by a similar amount in uncolonized and colonized plants, but shoot P concentration increased by 143% in uncolonized plants and 53% in colonized plants. Inoculation with AMF decreased the amount of rhizosphere carboxylates by 52%, raised rhizosphere pH by ∼0.2–0.7 pH units and lowered shoot Mn concentration by 38%. We conclude that AMF are not simply a means for plants to enhance P uptake when P is limiting, but also act to maintain shoot P within narrow boundaries and can affect nutrient uptake through their influence on rhizosphere chemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long-term monitoring of surface water quality has shown increasing concentrations of Dissolved Organic Carbon (DOC) across a large part of the Northern Hemisphere. Several drivers have been implicated including climate change, land management change, nitrogen and sulphur deposition and CO2 enrichment. Analysis of stream water data, supported by evidence from laboratory studies, indicates that an effect of declining sulphur deposition on catchment soil chemistry is likely to be the primary mechanism, but there are relatively few long term soil water chemistry records in the UK with which to investigate this, and other, hypotheses directly. In this paper, we assess temporal relationships between soil solution chemistry and parameters that have been argued to regulate DOC production and, using a unique set of co-located measurements of weather and bulk deposition and soil solution chemistry provided by the UK Environmental Change Network and the Intensive Forest Monitoring Level II Network . We used statistical non-linear trend analysis to investigate these relationships at 5 forested and 4 non-forested sites from 1993 to 2011. Most trends in soil solution DOC concentration were found to be non-linear. Significant increases in DOC occurred mostly prior to 2005. The magnitude and sign of the trends was associated qualitatively with changes in acid deposition, the presence/absence of a forest canopy, soil depth and soil properties. The strongest increases in DOC were seen in acidic forest soils and were most clearly linked to declining anthropogenic acid deposition, while DOC trends at some sites with westerly locations appeared to have been influenced by shorter-term hydrological variation. The results indicate that widespread DOC increases in surface waters observed elsewhere, are most likely dominated by enhanced mobilization of DOC in surficial organic horizons, rather than changes in the soil water chemistry of deeper horizons. While trends in DOC concentrations in surface horizons have flattened out in recent years, further increases may be expected as soil chemistry continues to adjust to declining inputs of acidity.