996 resultados para Neutral media
Resumo:
This paper presents experimental optimization of number and geometry of nanotube electrodes in a liquid crystal media from wavefront aberrations for realizing nanophotonic devices. The refractive-index gradient profiles from different nanotube geometries-arrays of one, three, four, and five-were studied along with wavefront aberrations using Zernike polynomials. The optimizations help the device to make application in the areas of voltage reconfigurable microlens arrays, high-resolution displays, wavefront sensors, holograms, and phase modulators. © 2012 Optical Society of America.
Resumo:
We describe our work on developing a speech recognition system for multi-genre media archives. The high diversity of the data makes this a challenging recognition task, which may benefit from systems trained on a combination of in-domain and out-of-domain data. Working with tandem HMMs, we present Multi-level Adaptive Networks (MLAN), a novel technique for incorporating information from out-of-domain posterior features using deep neural networks. We show that it provides a substantial reduction in WER over other systems, with relative WER reductions of 15% over a PLP baseline, 9% over in-domain tandem features and 8% over the best out-of-domain tandem features. © 2012 IEEE.
Resumo:
The on-demand availability of nanomaterials with selected size and well-defined chemical/physical properties is of fundamental importance for their widespread application. We report two clean, rapid, and non-destructive approaches for nanoparticle (NP) size selection in centrifugal fields. The first exploits rate zonal separation in a high viscosity gradient. The second exploits selective sedimentation of NPs with different sizes. These methods are here applied to metallic nanoparticles (MNPs) with different compositions and surface chemistry, dispersed either in water or organic solvents. The approach is general and can also be exploited for the separation of NPs of any material. We selectively sort both Au and AgNPs with sizes in the 10-30 nm range, achieving chemical-free MNPs with low polydispersivity. We do not use solutes, thus avoiding contamination, and only require low centrifugal fields, easily achievable in benchtop systems. © 2013 American Chemical Society.
Resumo:
The details of the Element Free Galerkin (EFG) method are presented with the method being applied to a study on hydraulic fracturing initiation and propagation process in a saturated porous medium using coupled hydro-mechanical numerical modelling. In this EFG method, interpolation (approximation) is based on nodes without using elements and hence an arbitrary discrete fracture path can be modelled.The numerical approach is based upon solving two governing partial differential equations of equilibrium and continuity of pore water simultaneously. Displacement increment and pore water pressure increment are discretized using the same EFG shape functions. An incremental constrained Galerkin weak form is used to create the discrete system of equations and a fully implicit scheme is used for discretization in the time domain. Implementation of essential boundary conditions is based on the penalty method. In order to model discrete fractures, the so-called diffraction method is used.Examples are presented and the results are compared to some closed-form solutions and FEM approximations in order to demonstrate the validity of the developed model and its capabilities. The model is able to take the anisotropy and inhomogeneity of the material into account. The applicability of the model is examined by simulating hydraulic fracture initiation and propagation process from a borehole by injection of fluid. The maximum tensile strength criterion and Mohr-Coulomb shear criterion are used for modelling tensile and shear fracture, respectively. The model successfully simulates the leak-off of fluid from the fracture into the surrounding material. The results indicate the importance of pore fluid pressure in the initiation and propagation pattern of fracture in saturated soils. © 2013 Elsevier Ltd.
Resumo:
Isolation of high neutral lipid-containing microalgae is key to the commercial success of microalgae-based biofuel production. The Nile red fluorescence method has been successfully applied to the determination of lipids in certain microalgae, but has been unsuccessful in many others, particularly those with thick, rigid cell walls that prevent the penetration of the fluorescence dye. The conventional "one sample at a time" method was also time-consuming. In this study, the solvent dimethyl sulfoxide (DMSO) was introduced to microalgal samples as the stain carrier at an elevated temperature. The cellular neutral lipids were determined and quantified using a 96-well plate on a fluorescence spectrophotometer with an excitation wavelength of 530 nm and an emission wavelength of 575 run. An optimized procedure yielded a high correlation coefficient (R-2 = 0.998) with the lipid standard triolein and repeated measurements of replicates. Application of the improved method to several green algal strains gave very reproducible results with relative standard errors of 8.5%, 3.9% and 8.6%, 4.5% for repeatability and reproducibility at two concentration levels (2.0 mu g/mL and 20 mu g/mL), respectively. Moreover, the detection and quantification limits of the improved Nile red staining method were 0.8 mu g/mL and 2.0 mu g/mL for the neutral lipid standard triolein, respectively. The modified method and a conventional gravimetric determination method provided similar results on replicate samples. The 96-well plate-based Nile red method can be used as a high throughput technique for rapid screening of a broader spectrum of naturally-occurring and genetically-modified algal strains and mutants for high neutral lipid/oil production. (C) 2009 Published by Elsevier B.V.
Resumo:
A comparative study was conducted to reveal the differentiate effects of eight different filter media including gravel, zeolites, anthracite, shale, vermiculite, ceramic filter media, blast furnace steel slag and round ceramsite. The study mainly related to the eight different filter media's removal performances of organic matter, nitrogen and phosphorus in the vertical flow constructed wetland simulated system, which treating wastewater at hydraulic loading rate of 1000-2500 mm/d. The results indicated that the removal effects were closely related to the physical and chemical properties of medium materials. Anthracite-filled system had the highest removal rate for the total organic carbon (TOC), up to 70%, and the removal rates of other systems ranged from 20% to 30%. As for the five-day biochemical oxygen demand (BOD5), anthracite-filled and steel slag-filled systems had the highest removal rates, also up to 70%, as well as other systems all exceeded 50%. At the same time, for the total nitrogen (TN) and NH4(+)-N, the zeolites-filled and ceramic-filled systems had the best performances with the removal rates of more than 70%, the other way round, the removal rates of other systems were only about 20%. The distinguishable effects were also observed in removal performances of total phosphorus (TP) and total dissoluble phosphorus (TDP). The removal rates of TP and TDP in steel slag-filled systems were more than 90%, a much higher value, followed by that of the anthracite-filled system, more than 60%, but those of other systems being the less. Our study provided a potential mechanism to optimize the filter media design for the vertical flow constructed wetlands.
Resumo:
Hot water-soluble polysaccharides woe extracted from field colonies and suspension cultures of Nostoc commune Vaucher, Nostoc flagelliforme Berkeley et Curtis, and Nostoc sphaeroides Kutzing. Excreted extracellular polymeric substances (EPS) were isolated from the media in which the suspension cultures were grown. The main monosaccharides of the field colony polysaccharides from the three species were glucose, xylose, and galactose, with an approximate ratio of 2:1:1. Mannose was also present, but the levels varied among the species, and arabinose appeared only in N. flagelliforme. The compositions of the cellular polysaccharides and EPS from suspension cultures were more complicated than those of the field samples and varied among the different species. The polysaccharides from the cultures of N. flagelliforme had a relatively simple composition consisting of mannose, galactose, glucose, and glucuronic acid, but no xylose, as was found in the field colony polysaccharides. The polysaccharides from cultures of N. sphaeroides contained glucose (the major component), rhamnose, fucose, xylose, mannose, and galactose. These same sugars were present in the polysaccharides from cultures of N. commune, with xylose as the major component. Combined nitrogen in the media had no qualitative influence on the compositions of the cellular polysaccharides but affected those of the EPS of N. commune and N. flagelliforme. The EPS of N. sphaeroides had a very low fetal carbohydrate content and thus was not considered to be polysaccharide in nature. The field colony polysaccharides could be separated by anion exchange chromatography into neutral and acidic fractions having similar sugar compositions. Preliminary linkage analysis showed that 1) xylose, glucose, and galactose were 1-->4 linked, 2) mannose, galactose, and xylose occurred as terminal residues, and 3) branch points occurred in glucose as 1-->3,4 and 1-->3,6 linkages and in xylose as a 1-->3,4 linkage. The polymer preparations from field colonies had higher kinematic viscosities than those from corresponding suspension cultures. The high viscosities of the polymers suggested that they might DE suitable for industrial uses.
Resumo:
The binding energy of an exciton bound to a neutral donor (D-0,X) in GaAs quantum-well wires is calculated variationally as a function of the wire width for different positions of the impurity inside the wire by using a two-parameter wavefunction. There is no artificial parameter added in our calculation. The results we have obtained show that the binding energies are closely correlated to the sizes of the wire, the impurity position, and also that their magnitudes are greater than those in the two-dimensional quantum wells compared. In addition, we also calculate the average interparticle distance as a function of the wire width. The results are discussed in detail.