950 resultados para Neurotoxic Polypeptide (robustoxin)
Resumo:
The complete nucleotide sequence, 5178 bp, of the totivirus Helminthosporium vicotoriae 190S virus (Hv190SV) double-stranded RNA, was determined. Computer-assisted sequence analysis revealed the presence of two large overlapping ORFs; the 5'-proximal large ORF (ORF1) codes for the coat protein (CP) with a predicted molecular mass of 81 kDa, and the 3'-proximal ORF (ORF2), which is in the -1 frame relative to ORF1, codes for an RNA-dependent RNA polymerase (RDRP). Unlike many other totiviruses, the overlap region between ORF1 and ORF2 lacks known structural information required for translational frameshifting. Using an antiserum to a C-terminal fragment of the RDRP, the product of ORF2 was identified as a minor virion-associated polypeptide of estimated molecular mass of 92 kDa. No CP-RDRP fusion protein with calculated molecular mass of 165 kDa was detected. The predicted start codon of the RDRP ORF (2605-AUG-2607) overlaps with the stop codon (2606-UGA-2608) of the CP ORF, suggesting RDRP is expressed by an internal initiation mechanism. Hv190SV is associated with a debilitating disease of its phytopathogenic fungal host. Knowledge of its genome organization and expression will be valuable for understanding its role in pathogenesis and for potential exploitation in the development of biocontrol measures.
Resumo:
In spite of much effort, no one has succeeded in isolating and characterizing the enzyme(s) responsible for synthesis of cellulose, the major cell wall polymer of plants. We have characterized two cotton (Gossypium hirsutum) cDNA clones and identified one rice (Oryza sativa) cDNA that are homologs of the bacterial celA genes that encode the catalytic subunit of cellulose synthase. Three regions in the deduced amino acid sequences of the plant celA gene products are conserved with respect to the proteins encoded by bacterial celA genes. Within these conserved regions, there are four highly conserved subdomains previously suggested to be critical for catalysis and/or binding of the substrate UDP-glucose (UDP-Glc). An overexpressed DNA segment of the cotton celA1 gene encodes a polypeptide fragment that spans these domains and binds UDP-Glc, while a similar fragment having one of these domains deleted does not. The plant celA genes show little homology at the N- and C-terminal regions and also contain two internal insertions of sequence, one conserved and one hypervariable, that are not found in the bacterial gene sequences. Cotton celA1 and celA2 genes are expressed at high levels during active secondary wall cellulose synthesis in developing cotton fibers. Genomic Southern blot analyses in cotton demonstrate that celA forms a small gene family.
Resumo:
RNase mitochondrial RNA processing enzyme (MRP) is a nucleolar ribonucleoprotein particle that participates in 5.8S ribosomal RNA maturation in eukaryotes. This enzyme shares a polypeptide and an RNA structural motif with ribonuclease P (RNase P), a nuclear endoribonuclease originally described in the nucleus that processes RNA transcripts to generate their mature 5' termini. Both enzymes are also located in mitochondria. This report further characterizes the relationship between RNase MRP and RNase P. Antisense affinity selection with biotinylated 2'-O-methyl oligoribonucleotides and glycerol gradient fractionation experiments demonstrated that small subpopulations of RNase MRP and RNase P associate with each other in vivo in macromolecular complex, possibly 60-80S preribosomes. This latter notion was supported by fluorescence in situ hybridization experiments with antisense oligonucleotides that localized that RNA components of RNase MRP and RNase P to the nucleolus and to discrete cytoplasmic structures. These findings suggest that small subpopulations of RNase MRP and RNase P are physically associated, and that both may function in ribosomal RNA maturation or ribosome assembly.
Resumo:
We have previously shown that three distinct DNA-binding activities, in crude form, are necessary for the ATP-dependent assembly of a specific and stable multiprotein complex at a yeast origin of replication. Here we show the purification of one of these DNA binding activities, referred to as origin binding factor 2 (OBF2). The purified protein is a heterodimer composed of two polypeptides with molecular mass values of 65 and 80 kDa as determined by SDS/PAGE. Purified OBF2 not only binds DNA but also supports the formation of a protein complex at essential sequences within the ARS121 origin of replication. Interestingly, OBF2 binds tightly and nonspecifically to both duplex DNA and single-stranded DNA. The interaction with duplex DNA occurs at the termini. N-terminal sequencing of the 65-kDa subunit has revealed that this polypeptide is identical to the previously identified HDF1 peptide, a yeast homolog of the small subunit of the mammalian Ku autoantigen. Although the potential involvement of Ku in DNA metabolic events has been proposed, this is the first requirement for a Ku-like protein in the assembly of a protein complex at essential sequences within a eukaryotic origin of replication.
Resumo:
We had earlier identified the pcnB locus as the gene for the major Escherichia coli poly(A) polymerase (PAP I). In this report, we describe the disruption and identification of a candidate gene for a second poly(A) polymerase (PAP II) by an experimental strategy which was based on the assumption that the viability of E. coli depends on the presence of either PAP I or PAP II. The coding region thus identified is the open reading frame f310, located at about 87 min on the E. coli chromosome. The following lines of evidence support f310 as the gene for PAP II: (i) the deduced peptide encoded by f310 has a molecular weight of 36,300, similar to the molecular weight of 35,000 estimated by gel filtration of PAP II; (ii) the deduced f310 product is a relatively hydrophobic polypeptide with a pI of 9.4, consistent with the properties of partially purified PAP II; (iii) overexpression of f310 leads to the formation of inclusion bodies whose solubilization and renaturation yields poly(A) polymerase activity that corresponds to a 35-kDa protein as shown by enzyme blotting; and (iv) expression of a f310 fusion construct with hexahistidine at the N-terminus of the coding region allowed purification of a poly(A) polymerase fraction whose major component is a 36-kDa protein. E. coli PAP II has no significant sequence homology either to PAP I or to the viral and eukaryotic poly(A) polymerases, suggesting that the bacterial poly(A) polymerases have evolved independently. An interesting feature of the PAP II sequence is the presence of sets of two paired cysteine and histidine residues that resemble the RNA binding motifs seen in some other proteins.
Resumo:
How fast can a protein fold? The rate of polypeptide collapse to a compact state sets an upper limit to the rate of folding. Collapse may in turn be limited by the rate of intrachain diffusion. To address this question, we have determined the rate at which two regions of an unfolded protein are brought into contact by diffusion. Our nanosecond-resolved spectroscopy shows that under strongly denaturing conditions, regions of unfolded cytochrome separated by approximately 50 residues diffuse together in 35-40 microseconds. This result leads to an estimate of approximately (1 microsecond)-1 as the upper limit for the rate of protein folding.
Resumo:
Protein-protein interactions typically are characterized by highly specific interfaces that mediate binding with precisely tuned affinities. Binding of the Escherichia coli cochaperonin GroES to chaperonin GroEL is mediated, at least in part, by a mobile polypeptide loop in GroES that becomes immobilized in the GroEL/GroES/nucleotide complex. The bacteriophage T4 cochaperonin Gp31 possesses a similar highly flexible polypeptide loop in a region of the protein that shows low, but significant, amino acid similarity with GroES and other cochaperonins. When bound to GroEL, a synthetic peptide representing the mobile loop of either GroES or Gp31 adopts a characteristic bulged hairpin conformation as determined by transferred nuclear Overhauser effects in NMR spectra. Thermodynamic considerations suggest that flexible disorder in the cochaperonin mobile loops moderates their affinity for GroEL to facilitate cycles of chaperonin-mediated protein folding.
Resumo:
We have used a novel site-specific protein-DNA photocrosslinking procedure to define the positions of polypeptide chains relative to promoter DNA in binary, ternary, and quaternary complexes containing human TATA-binding protein, human or yeast transcription factor IIA (TFIIA), human transcription factor IIB (TFIIB), and promoter DNA. The results indicate that TFIIA and TFIIB make more extensive interactions with promoter DNA than previously anticipated. TATA-binding protein, TFIIA, and TFIIB surround promoter DNA for two turns of DNA helix and thus may form a "cylindrical clamp" effectively topologically linked to promoter DNA. Our results have implications for the energetics, DNA-sequence-specificity, and pathway of assembly of eukaryotic transcription complexes.
Resumo:
Escherichia coli DnaK acts as a molecular chaperone through its ATP-regulated binding and release of polypeptide substrates. Overexpressing a C-terminal fragment (CTF) of DnaK (Gly-384 to Lys-638) containing the polypeptide substrate binding domain is lethal in wild-type E. coli. This dominant-negative phenotype may result from the nonproductive binding of CTF to cellular polypeptide targets of DnaK. Mutations affecting DnaK substrate binding were identified by selecting noncytotoxic CTF mutants followed by in vitro screening. The clustering of such mutations in the three-dimensional structure of CTF suggests the model that loops L1,2 and L4,5 form a rigid core structure critical for interactions with substrate.
Resumo:
Resistance of Lactococcus lactis to cytotoxic compounds shares features with the multidrug resistance phenotype of mammalian tumor cells. Here, we report the gene cloning and functional characterization in Escherichia coli of LmrA, a lactococcal structural and functional homolog of the human multidrug resistance P-glycoprotein MDR1. LmrA is a 590-aa polypeptide that has a putative topology of six alpha-helical transmembrane segments in the N-terminal hydrophobic domain, followed by a hydrophilic domain containing the ATP-binding site. LmrA is similar to each of the two halves of MDR1 and may function as a homodimer. The sequence conservation between LmrA and MDR1 includes particular regions in the transmembrane domains and connecting loops, which, in MDR1 and the MDR1 homologs in other mammalian species, have been implicated as determinants of drug recognition and binding. LmrA and MDR1 extrude a similar spectrum of amphiphilic cationic compounds, and the activity of both systems is reversed by reserpine and verapamil. As LmrA can be functionally expressed in E. coli, it offers a useful prokaryotic model for future studies on the molecular mechanism of MDR1-like multidrug transporters.
Resumo:
The junction-associated protein zonula occludens-1 (ZO-1) is a member of a family of membrane-associated guanylate kinase homologues thought to be important in signal transduction at sites of cell-cell contact. We present evidence that under certain conditions of cell growth, ZO-1 can be detected in the nucleus. Two different antibodies against distinct portions of the ZO-1 polypeptide reveal nuclear staining in subconfluent, but not confluent, cell cultures. An exogenously expressed, epitope-tagged ZO-1 can also be detected in the nuclei of transfected cells. Nuclear accumulation can be stimulated at sites of wounding in cultured epithelial cells, and immunoperoxidase detection of ZO-1 in tissue sections of intestinal epithelial cells reveals nuclear labeling only along the outer tip of the villus. These results suggest that the nuclear localization of ZO-1 is inversely related to the extent and/or maturity of cell contact. Since cell-cell contacts are specialized sites for signaling pathways implicated in growth and differentiation, we suggest that the nuclear accumulation of ZO-1 may be relevant for its suggested role in membrane-associated guanylate kinase homologue signal transduction.
Resumo:
The aquaporin family of membrane water transport proteins are expressed in diverse tissues, and in brain the predominant water channel protein is AQP4. Here we report the isolation and characterization of the human AQP4 cDNAs and genomic DNA. Two cDNAs were isolated corresponding to the two initiating methionines (M1 in a 323-aa polypeptide and M23 in a 301-aa polypeptide) previously identified in rat [Jung, J.S., Bhat, R.V., Preston, G.M., Guggino, W.B. & Agre, P. (1994) Proc. Natl. Acad. Sci. USA 91, 13052-13056]. Similar to other aquaporins, the AQP4 gene is composed of four exons encoding 127, 55, 27, and 92 amino acids separated by introns of 0.8, 0.3, and 5.2 kb. Unlike other aquaporins, an alternative coding initiation sequence (designated exon 0) was located 2.7 kb upstream of exon 1. When spliced together, M1 and the subsequent 10 amino acids are encoded by exon 0; the next 11 amino acids and M23 are encoded by exon 1. Transcription initiation sites have been mapped in the proximal promoters of exons 0 and 1. RNase protection revealed distinct transcripts corresponding to M1 and M23 mRNAs, and AQP4 immunoblots of cerebellum demonstrated reactive polypeptides of 31 and 34 kDa. Using a P1 and a lambda EMBL subclone, the chromosomal site of the human AQP4 gene was mapped to chromosome 18 at the junction of q11.2 and q12.1 by fluorescence in situ hybridization. These studies may now permit molecular characterization of AQP4 during human development and in clinical disorders.
Resumo:
The cDNA corresponding to a fourth species of diacylglycerol (DG) kinase (EC 2.7.1.107) was isolated from cDNA libraries of rat retina and brain. This cDNA encoded a 929-aa, 104-kDa polypeptide termed DGK-IV. DGK-IV was different from previously identified mammalian DG kinase species, DGK-I, DGK-II, and DGK-III, in that it contained no EF-hand motifs but did contain four ankyrin-like repeats at the carboxyl terminus. These structural features of DGK-IV closely resemble the recently cloned, eye-specific DG kinase of Drosophila that is encoded by the retinal degeneration A (rdgA) gene. However, DGK-IV was expressed primarily in the thymus and brain with relatively low expression in the eye and intestine. Furthermore, the primary structure of the DGK-IV included a nuclear targeting motif, and immunocytochemical analysis revealed DGK-IV to localize in the nucleus of COS-7 cells transfected with the epitope-tagged cDNA, suggesting an involvement of DGK-IV in intranuclear processes.
Resumo:
Many bacteria use acyl homoserine lactone signals to monitor cell density in a type of gene regulation termed quorum sensing and response. Synthesis of these signals is directed by homologs of the luxi gene of Vibrio fischeri. This communication resolves two critical issues concerning the synthesis of the V. fischeri signal. (i) The luxI product is directly involved in signal synthesis-the protein is an acyl homoserine lactone synthase; and (ii) the substrates for acyl homoserine lactone synthesis are not amino acids from biosynthetic pathways or fatty acid degradation products, but rather they are S-adenosylmethionine (SAM) and an acylated acyl carrier protein (ACP) from the fatty acid biosynthesis pathway. We purified a maltose binding protein-LuxI fusion polypeptide and showed that, when provided with the appropriate substrates, it catalyzes the synthesis of an acyl homoserine lactone. In V. fischeri, luxi directs the synthesis of N-(3-oxohexanoyl) homoserine lactone and hexanoyl homoserine lactone. The purified maltose binding protein-LuxI fusion protein catalyzes the synthesis of hexanoyl homoserine lactone from hexanoyl-ACP and SAM. There is a high level of specificity for hexanoyl-ACP over ACPs with differing acyl group lengths, and hexanoyl homoserine lactone was not synthesized when SAM was replaced with other amino acids, such as methionine, S-adenosylhomocysteine, homoserine, or homoserine lactone, or when hexanoyl-SAM was provided as the substrate. This provides direct evidence that the LuxI protein is an auto-inducer synthase that catalyzes the formation of an amide bond between SAM and a fatty acyl-ACP and then catalyzes the formation of the acyl homoserine lactone from the acyl-SAM intermediate.
Resumo:
The assembly of functional proteins from fragments in vivo has been recently described for several proteins, including the secreted maltose binding protein in Escherichia coli. Here we demonstrate for the first time that split gene products can function within the eukaryotic secretory system. Saccharomyces cerevisiae strains able to use sucrose produce the enzyme invertase, which is targeted by a signal peptide to the central secretory pathway and the periplasmic space. Using this enzyme as a model we find the following: (i) Polypeptide fragments of invertase, each containing a signal peptide, are independently translocated into the endoplasmic reticulum (ER) are modified by glycosylation, and travel the entire secretory pathway reaching the yeast periplasm. (ii) Simultaneous expression of independently translated and translocated overlapping fragments of invertase leads to the formation of an enzymatically active complex, whereas individually expressed fragments exhibit no activity. (iii) An active invertase complex is assembled in the ER, is targeted to the yeast periplasm, and is biologically functional, as judged by its ability to facilitate growth on sucrose as a single carbon source. These observation are discussed in relation to protein folding and assembly in the ER and to the trafficking of proteins through the secretory pathway.