996 resultados para Nd:YVO4


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have analyzed the Nd isotopic composition of both ancient seawater and detrital material from long sequences of carbonated oozes of the South Indian Ocean which are ODP Site 756 (Ninety East Ridge (-30°S), 1518 m water depth) and ODP Site 762 (Northwest Australian margin, 1360 m water depth). The measurements indicate that the epsilon-Nd changes in Indian seawater over the last 35 Ma result from changes in the oceanic circulation, large volcanic and continental weathering Nd inputs. This highlights the diverse nature of those controls and their interconnections in a small area of the ocean. These new records combined with those previously obtained at the equatorial ODP Sites 757 and 707 in the Indian Ocean (Gourlan et al., 2008, doi:10.1016/j.epsl.2007.11.054) established that the distribution of intermediate seawater epsilon-Nd was uniform over most of the Indian Ocean from 35 Ma to 10 Ma within a geographical area extending from 40°S to the equator and from -60°E to 120°E. However, the epsilon-Nd value of Indian Ocean seawater which kept an almost constant value (at about -7 to -8) from 35 to 15 Ma rose by 3 epsilon-Nd units from 15 to 10 Ma. This sharp increase has been caused by a radiogenic Nd enrichment of the water mass originating from the Pacific flowing through the Indonesian Passage. Using a two end-members model we calculated that the Nd transported to the Indian Ocean through the Indonesian Pathway was 1.7 times larger at 10 Ma than at 15 Ma. The Nd isotopic composition of ancient seawater and that of the sediment detrital component appear to be strongly correlated for some specific events. A first evidence occurs between 20 and 15 Ma with two positive spikes recorded in both epsilon-Nd signals that are clearly induced by a volcanic crisis of, most likely, the St. Paul hot-spot. A second evidence is the very large epsilon-Nd decrease recorded at ODP Sites 756 and 762 during the past 10 Ma which has never been previously observed. The synchronism between the epsilon-Nd decrease in seawater from 10 to 5 Ma and evidences of desertification in the western part of the nearly Australian continent suggests enhanced weathering inputs in this ocean from this continent as a result of climatic changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The shoaling and final closure of the Central American Seaway (CAS) resulted in a major change of the global ocean circulation and has been suggested as an essential driver for strengthening of Atlantic Meridional Overturning Circulation (AMOC). The exact timing of CAS closure is key to interpreting its importance. Here we present a reconstruction of deep and intermediate water Nd and Pb isotope compositions obtained from fossil fish teeth and the authigenic coatings of planktonic foraminifera in the eastern equatorial Pacific (Ocean Drilling Program (ODP) Site 1241) and the Caribbean (ODP Sites 998, 999, and 1000) covering the final stages of CAS closure between 5.6 and 2.2 Ma. The data for the Pacific site indicate no significant Atlantic/Caribbean influence over this entire period. The Caribbean sites show a continuous trend to less radiogenic Nd isotope compositions during the Pliocene, consistent with an enhancement of Upper North Atlantic Deep Water (UNADW) inflow and a strengthening of the AMOC. Superimposed onto this long-term trend, shorter-term changes of intermediate Caribbean Nd isotope signatures approached more UNADW-like values during intervals when published reconstructions of seawater salinity suggested complete closure of the CAS. The data imply that significant deep water exchange with the Pacific essentially stopped by 7 Ma and that shallow exchange, which still occurred at least periodically until approximately 2.5 Ma, may have been linked to the strength of the AMOC but did not have any direct effect on the intermediate and deep Caribbean Nd isotope signatures through mixing with Pacific waters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isotopic ratios of Sr and Nd from lithogenic components of three isochronous core sections recovered from an east-west transect in the Eastern Mediterranean Sea (EMS) have been analyzed. The data are used for a quantitative estimate of the temporal and spatial variation of detrital flux to the EMS, assuming Saharan dust and Aegean/Nile particulate matter as dominant end members. It was established that the carbonate-free Saharan dust flux during deposition of the nonsapropel layers of marine oxygen isotope stage 5.4 (MIS 5.4) was similar to the present flux. During the deposition of sapropels S5 and S6, however, the Saharan dust input was drastically reduced and was not balanced by a change in the riverine influx at this time. Denser vegetation cover during more humid conditions may have reduced physical erosion and sediment removal in the source area. During marine oxygen isotope stage 6.2 (MIS 6.2) a pronounced increase of Saharan dust and detrital influx from the Aegean region is evident and implies more arid conditions in the southern and northern catchment areas. During this period, intersite variations are interpreted in terms of their geographic location relative to the seaways connecting the Aegean Sea and EMS. The width of the straits and hence the amount of sediment entering the eastern basins may have been affected by a low sea level that impeded interbasin sediment dispersal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to characterize the provenance of lithogenic surface sediments from the Eastern Mediterranean Sea (EMS), residual (leached) fraction of 34 surface samples have been analysed for their 143Nd/144Nd and 87Sr/86Sr isotope ratios. The sample locations bracket all important entrances of riverine suspended matter into the EMS as well as all sub-basins of the EMS. The combined analyses of these two isotope ratios provide a precise characterization of the lithogenic fraction of surface sediments and record their dilution towards the central sub-basins. We reconstruct provenance and possible pathways of riverine dispersal and current redistribution, assuming more or less homogenous isotopic signatures and flux rates of the eolian fraction over the EMS. Lithogenic sediments entering the Ionian Sea from the Calabrian Arc and the Adriatic Sea are characterized by high 87Sr/86Sr isotope ratios and low epsilon-Nd(0) values (average 87Sr/86Sr=0.718005 and epsilon-Nd(0)=-11.06, n=5). Aegean Sea terrigenous sediments show an average ratio of 87Sr/86Sr=0.713089 (n=5) and values of epsilon-Nd(0)=-7.89 (n=5). The Aegean isotopic signature is traceable up to the southwest, south, and southeast of Crete. The sediment loads entering the EMS via the Aegean Sea are low and spread out mainly through the Strait of Casos (east of Crete). Surface sediments from the eastern Levantine Basin are marked by the highest epsilon-Nd(0) values (-3.3, n=6) and lowest 87Sr/86Sr isotope ratios (average 0.709541, n=6), reflecting the predominant input of the Nile sediment. The influence of the Nile sediment is traceable up to the NE-trending, eastern flank of the Mediterranean Ridge. The characterization of the modern riverine dispersal and eolian flux, based on isotope data, may serve as a tool to reconstruct climate-coupled variations of lithogenic sediment input into the EMS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Each volume has score and 3 parts.