999 resultados para NEUTRON-STAR MATTER
Resumo:
A new approach to the study of the local organization in amorphous polymer materials is presented. The method couples neutron diffraction experiments that explore the structure on the spatial scale 1–20 Å with the reverse Monte Carlo fitting procedure to predict structures that accurately represent the experimental scattering results over the whole momentum transfer range explored. Molecular mechanics and molecular dynamics techniques are also used to produce atomistic models independently from any experimental input, thereby providing a test of the viability of the reverse Monte Carlo method in generating realistic models for amorphous polymeric systems. An analysis of the obtained models in terms of single chain properties and of orientational correlations between chain segments is presented. We show the viability of the method with data from molten polyethylene. The analysis derives a model with average C-C and C-H bond lengths of 1.55 Å and 1.1 Å respectively, average backbone valence angle of 112, a torsional angle distribution characterized by a fraction of trans conformers of 0.67 and, finally, a weak interchain orientational correlation at around 4 Å.
Resumo:
We present a new methodology that couples neutron diffraction experiments over a wide Q range with single chain modelling in order to explore, in a quantitative manner, the intrachain organization of non-crystalline polymers. The technique is based on the assignment of parameters describing the chemical, geometric and conformational characteristics of the polymeric chain, and on the variation of these parameters to minimize the difference between the predicted and experimental diffraction patterns. The method is successfully applied to the study of molten poly(tetrafluoroethylene) at two different temperatures, and provides unambiguous information on the configuration of the chain and its degree of flexibility. From analysis of the experimental data a model is derived with CC and CF bond lengths of 1.58 and 1.36 Å, respectively, a backbone valence angle of 110° and a torsional angle distribution which is characterized by four isometric states, namely a split trans state at ± 18°, giving rise to a helical chain conformation, and two gauche states at ± 112°. The probability of trans conformers is 0.86 at T = 350°C, which decreases slightly to 0.84 at T = 400°C. Correspondingly, the chain segments are characterized by long all-trans sequences with random changes in sign, rather anisotropic in nature, which give rise to a rather stiff chain. We compare the results of this quantitative analysis of the experimental scattering data with the theoretical predictions of both force fields and molecular orbital conformation energy calculations.
Resumo:
The organization of non-crystalline polymeric materials at a local level, namely on a spatial scale between a few and 100 a, is still unclear in many respects. The determination of the local structure in terms of the configuration and conformation of the polymer chain and of the packing characteristics of the chain in the bulk material represents a challenging problem. Data from wide-angle diffraction experiments are very difficult to interpret due to the very large amount of information that they carry, that is the large number of correlations present in the diffraction patterns.We describe new approaches that permit a detailed analysis of the complex neutron diffraction patterns characterizing polymer melts and glasses. The coupling of different computer modelling strategies with neutron scattering data over a wide Q range allows the extraction of detailed quantitative information on the structural arrangements of the materials of interest. Proceeding from modelling routes as diverse as force field calculations, single-chain modelling and reverse Monte Carlo, we show the successes and pitfalls of each approach in describing model systems, which illustrate the need to attack the data analysis problem simultaneously from several fronts.
Resumo:
We present a new approach that allows the determination and refinement of force field parameters for the description of disordered macromolecular systems from experimental neutron diffraction data obtained over a large Q range. The procedure is based on tight coupling between experimentally derived structure factors and computer modelling. By separating the potential into terms representing respectively bond stretching, angle bending and torsional rotation and by treating each of them separately, the various potential parameters are extracted directly from experiment. The procedure is illustrated on molten polytetrafluoroethylene.
Resumo:
We present a new approach that allows the determination of force-field parameters for the description of disordered macromolecular systems from experimental neutron diffraction data obtained over a large Q range. The procedure is based on a tight coupling between experimentally derived structure factors and computer modelling. We separate the molecular potential into non-interacting terms representing respectively bond stretching, angle bending and torsional rotation. The parameters for each of the potentials are extracted directly from experimental data through comparison of the experimental structure factor and those derived from atomistic level molecular models. The viability of these force fields is assessed by comparison of predicted large-scale features such as the characteristic ratio. The procedure is illustrated on molten poly(ethylene) and poly(tetrafluoroethylene).
Resumo:
Determination of the local structure of a polymer glass by scattering methods is complex due to the number of spatial and orientational correlations, both from within the polymer chain (intrachain) and between neighbouring chains (interchain), from which the scattering arises. Recently considerable advances have been made in the structural analysis of relatively simple polymers such as poly(ethylene) through the use of broad Q neutron scattering data tightly coupled to atomistic modelling procedures. This paper presents the results of an investigation into the use of these procedures for the analysis of the local structure of a-PMMA which is chemically more complex with a much greater number of intrachain structural parameters. We have utilised high quality neutron scattering data obtained using SANDALS at ISIS coupled with computer models representing both the single chain and bulk polymer system. Several different modelling approaches have been explored which encompass such techniques as Reverse Monte Carlo refinement and energy minimisation and their relative merits and successes are discussed. These different approaches highlight structural parameters which any realistic model of glassy atactic PMMA must replicate.
Resumo:
Drawing upon an updated and expanded dataset of Energy Star and LEED labeled commercial offices, this paper investigates the effect of eco-labeling on rental rates, sale prices and occupancy rates. Using OLS and robust regression procedures, hedonic modeling is used to test whether the presence of an eco-label has a significant positive effect on rental rates, sale prices and occupancy rates. The study suggests that estimated coefficients can be sensitive to outlier treatment. For sale prices and occupancy rates, there are notable differences between estimated coefficients for OLS and robust regressions. The results suggest that both Energy Star and LEED offices obtain rental premiums of approximately 3%. A 17% sale price premium is estimated for Energy Star labeled offices but no significant sale price premium is estimated for LEED labeled offices. Surprisingly, no significant occupancy premium is estimated for Energy Star labeled offices and a negative occupancy premium is estimated for LEED labeled offices.
Resumo:
Argues that the controversial "Bruton tenancies" created by the House of Lords decision in Bruton v London & Quadrant Housing Trust should be seen as a form of proprietary tenancy. Discusses the view that those without an estate in land are prevented by the nemo dat principle from granting a lease, the scope for tenancies derived from equitable interests, and the challenges to Bruton tenancies posed by the Court of Appeal ruling in Milmo v Carreras. Explains how Bruton tenancies create a circumscribed proprietary interest in land, best understood through the concept of relativity of title.
Resumo:
The aim of the present work is to study the occupants' exposure to fine particulate concentrations in ten nightclubs (NCs) in Athens, Greece. Measurements of PM1 and PM 2.5 were made in the outdoor and indoor environment of each NC. The average indoorPM1 andPM 2.5 concentrations were found to be 181.77 μgm−3 and 454.08 μg m−3 respectively, while the corresponding outdoor values were 11.04 μg m−3 and 32.19 μg m−3. Ventilation and resuspension rates were estimated through consecutive numerical experiments with an indoor air quality model and were found to be remarkably lower than the minimum values recommended by national standards. The relative effects of the ventilation and smoking on the occupants' exposures were examined using multiple regression techniques. Itwas found that given the low ventilation rates, the effect of smoking as well as the occupancy is of the highest importance. Numerical evaluations showed that if the ventilation rates were at the minimum values set by national standards, then the indoor exposures would be reduced at the 70% of the present exposure values.
Resumo:
A military operation is about to take place during an ongoing international armed conflict; it can be carried out either by aerial attack, which is expected to cause the deaths of enemy civilians, or by using ground troops, which is expected to cause the deaths of fewer enemy civilians but is expected to result in more deaths of compatriot soldiers. Does the principle of proportionality in international humanitarian law impose a duty on an attacker to expose its soldiers to life-threatening risks in order to minimise or avert risks of incidental damage to enemy civilians? If such a duty exists, is it absolute or qualified? And if it is a qualified duty, what considerations may be taken into account in determining its character and scope? This article presents an analytic framework under the current international humanitarian law (IHL) legal structure, following a proportionality analysis. The proposed framework identifies five main positions for addressing the above queries. The five positions are arranged along two ‘axes’: a value ‘axis’, which identifies the value assigned to the lives of compatriot soldiers in relation to lives of enemy civilians; and a justification ‘axis’, which outlines the justificatory bases for assigning certain values to lives of compatriot soldiers and enemy civilians: intrinsic, instrumental or a combination thereof. The article critically assesses these positions, and favours a position which attributes a value to compatriot soldiers’ lives, premised on a justificatory basis which marries intrinsic considerations with circumscribed instrumental considerations, avoiding the indeterminacy and normative questionability entailed by more expansive instrumental considerations.
Resumo:
A penta-nuclear. star-shaped hetero-metallic compound containing a unique Ni4KO8 core has been synthesized. The X-ray single crystal structure analysis reveals that in the complex, [K(Ni(LH)(2))(4)(OH2)(8)](Br)(ClO4)(8)center dot 11H(2)O (LH=(CH3)(2)HN+(CH2)(3)N=CHC6H4O-) the eight coordinate central K+ ion is encapsulated by four terminal [Ni(LH)(2)](2+) units through the double water bridges between K+ and each Ni(II) ions.
Resumo:
American policy-makers are predisposed towards the idea of a necessary war of survival, fought with little room for choice. This reflects a dominant memory of World War II that teaches Americans that they live in a dangerously small world that imposes conflict. Critics argue that the ‘choice versus necessity’ schema is ahistorical and mischievous. This article offers supporting fire to those critiques. America’s war against the Axis (1941–45) is a crucial case through which to test the ‘small world’ view. Arguments for war in 1941 pose overblown scenarios of the rise of a Eurasian super-threat. In 1941 conflict was discretionary and not strictly necessary in the interests of national security. The argument for intervention is a closer call that often assumed. This has implications for America’s choices today.