932 resultados para NEURONAL DIFFERENTIATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The innate immune reaction to tissue injury is a natural process, which can have detrimental effects in the absence of negative feedbacks by glucocorticoids (GCs). Although acute lipopolysaccharide (LPS) challenge is relatively harmless to the brain parenchyma of adult animals, the endotoxin is highly neurotoxic in animals that are treated with the GC receptor antagonist RU486. This study investigated the role of cytokines of the gp130-related family in these effects, because they are essential components of the inflammatory process that provide survival signals to neurons. Intracerebral LPS injection stimulated expression of several members of this family of cytokines, but oncostatin M (Osm) was the unique ligand to be completely inhibited by the RU486 treatment. OSM receptor (Osmr) is expressed mainly in astrocytes and endothelial cells following LPS administration and GCs are directly responsible for its transcriptional activation in the presence of the endotoxin. In a mouse model of demyelination, exogenous OSM significantly modulated the expression of genes involved in the mobilization of oligodendrocyte precursor cells (OPCs), differentiation of oligodendrocyte, and production of myelin. In conclusion, the activation of OSM signaling is a mechanism activated by TLR4 in the presence of negative feedback by GCs on the innate immune system of the brain. OSM absence is associated with detrimental effects of LPS, whereas exogenous OSM favors repair response to demyelinated regions. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prion protein (PrP(C)) interaction with stress inducible protein 1 (STI1) mediates neuronal survival and differentiation. However, the function of PrP(C) in astrocytes has not been approached. In this study, we show that STI1 prevents cell death in wild-type astrocytes in a protein kinase A-dependent manner, whereas PrP(C)-null astrocytes were not affected by STI1 treatment. At embryonic day 17, cultured astrocytes and brain extracts derived from PrP(C)-null mice showed a reduced expression of glial fibrillary acidic protein (GFAP) and increased vimentin and nestin expression when compared with wild-type, suggesting a slower rate of astrocyte maturation in PrP(C)-null animals. Furthermore, PrP(C)-null astrocytes treated with STI1 did not differentiate from a flat to a process-bearing morphology, as did wild-type astrocytes. Remarkably, STI1 inhibited proliferation of both wild-type and PrP(C)-null astrocytes in a protein kinase C-dependent manner. Taken together, our data show that PrP(C) and STI1 are essential to astrocyte development and act through distinct signaling pathways.(C) 2009 Wiley-Liss, Inc.