952 resultados para Myocardial Reperfusion Injury


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Induction of the antioxidant enzyme heme oxygenase-1 (HO-1) affords cellular protection and suppresses proliferation of vascular smooth muscle cells (VSMCs) associated with a variety of pathological cardiovascular conditions including myocardial infarction and vascular injury. However, the underlying mechanisms are not fully understood. Over-expression of Cav3.2 T-type Ca2+ channels in HEK293 cells raised basal [Ca2+]i and increased proliferation as compared with non-transfected cells. Proliferation and [Ca2+]i levels were reduced to levels seen in non-transfected cells either by induction of HO-1 or exposure of cells to the HO-1 product, carbon monoxide (CO) (applied as the CO releasing molecule, CORM-3). In the aortic VSMC line A7r5, proliferation was also inhibited by induction of HO-1 or by exposure of cells to CO, and patch-clamp recordings indicated that CO inhibited T-type (as well as L-type) Ca2+ currents in these cells. Finally, in human saphenous vein smooth muscle cells, proliferation was reduced by T-type channel inhibition or by HO-1 induction or CO exposure. The effects of T-type channel blockade and HO-1 induction were non-additive. Collectively, these data indicate that HO-1 regulates proliferation via CO-mediated inhibition of T-type Ca2+ channels. This signalling pathway provides a novel means by which proliferation of VSMCs (and other cells) may be regulated therapeutically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background—A major problem in procurement of donor hearts is the limited time a donor heart remains viable. After cardiectomy, ischemic hypoxia is the main cause of donor heart degradation. The global myocardial ischemia causes a cascade of oxygen radical formation that cumulates in an elevation in hydrogen ions (decrease in pH), irreversible cellular injury, and potential microvascular changes in perfusion. Objective—To determine the changes of prolonged storage times on donor heart microvasculature and the effects of intermittent antegrade perfusion. Materials and Methods—Using porcine hearts flushed with a Ribosol-based cardioplegic solution, we examined how storage time affects microvascular myocardial perfusion by using contrast-enhanced magnetic resonance imaging at a mean (SD) of 6.1 (0.6) hours (n=13) or 15.6 (0.6) hours (n=11) after cardiectomy. Finally, to determine if administration of cardioplegic solution affects pH and microvascular perfusion, isolated hearts (group 1, n=9) given a single antegrade dose, were compared with hearts (group 2, n=8) given intermittent antegrade cardioplegia (150 mL, every 30 min, 150 mL/min) by a heart preservation device. Khuri pH probes in left and right ventricular tissue continuously measured hydrogen ion levels, and perfusion intensity on magnetic resonance images was plotted against time. Results—Myocardial perfusion measured via magnetic resonance imaging at 6.1 hours was significantly greater than at 15.6 hours (67% vs 30%, P= .00008). In group 1 hearts, the mean (SD) for pH at the end of 6 hours decreased to 6.2 (0.2). In group 2, hearts that received intermittent antegrade cardioplegia, pH at the end of 6 hours was higher at 6.7 (0.3) (P=.0005). Magnetic resonance imaging showed no significant differences between the 2 groups in contrast enhancement (group 1, 62%; group 2, 40%) or in the wet/dry weight ratio. Conclusion—Intermittent perfusion maintains a significantly higher myocardial pH than does a conventional single antegrade dose. This difference may translate into an improved quality of donor hearts procured for transplantation, allowing longer distance procurement, tissue matching, improved outcomes for transplant recipients, and ideally a decrease in transplant-related costs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective. Assimilating the diagnosis complete spinal cord injury (SCI) takes time and is not easy, as patients know that there is no ‘cure’ at the present time. Brain–computer interfaces (BCIs) can facilitate daily living. However, inter-subject variability demands measurements with potential user groups and an understanding of how they differ to healthy users BCIs are more commonly tested with. Thus, a three-class motor imagery (MI) screening (left hand, right hand, feet) was performed with a group of 10 able-bodied and 16 complete spinal-cord-injured people (paraplegics, tetraplegics) with the objective of determining what differences were present between the user groups and how they would impact upon the ability of these user groups to interact with a BCI. Approach. Electrophysiological differences between patient groups and healthy users are measured in terms of sensorimotor rhythm deflections from baseline during MI, electroencephalogram microstate scalp maps and strengths of inter-channel phase synchronization. Additionally, using a common spatial pattern algorithm and a linear discriminant analysis classifier, the classification accuracy was calculated and compared between groups. Main results. It is seen that both patient groups (tetraplegic and paraplegic) have some significant differences in event-related desynchronization strengths, exhibit significant increases in synchronization and reach significantly lower accuracies (mean (M) = 66.1%) than the group of healthy subjects (M = 85.1%). Significance. The results demonstrate significant differences in electrophysiological correlates of motor control between healthy individuals and those individuals who stand to benefit most from BCI technology (individuals with SCI). They highlight the difficulty in directly translating results from healthy subjects to participants with SCI and the challenges that, therefore, arise in providing BCIs to such individuals

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Assimilating the diagnosis complete spinal cord injury (SCI) takes time and is not easy, as patients know that there is no 'cure' at the present time. Brain-computer interfaces (BCIs) can facilitate daily living. However, inter-subject variability demands measurements with potential user groups and an understanding of how they differ to healthy users BCIs are more commonly tested with. Thus, a three-class motor imagery (MI) screening (left hand, right hand, feet) was performed with a group of 10 able-bodied and 16 complete spinal-cord-injured people (paraplegics, tetraplegics) with the objective of determining what differences were present between the user groups and how they would impact upon the ability of these user groups to interact with a BCI. APPROACH: Electrophysiological differences between patient groups and healthy users are measured in terms of sensorimotor rhythm deflections from baseline during MI, electroencephalogram microstate scalp maps and strengths of inter-channel phase synchronization. Additionally, using a common spatial pattern algorithm and a linear discriminant analysis classifier, the classification accuracy was calculated and compared between groups. MAIN RESULTS: It is seen that both patient groups (tetraplegic and paraplegic) have some significant differences in event-related desynchronization strengths, exhibit significant increases in synchronization and reach significantly lower accuracies (mean (M) = 66.1%) than the group of healthy subjects (M = 85.1%). SIGNIFICANCE: The results demonstrate significant differences in electrophysiological correlates of motor control between healthy individuals and those individuals who stand to benefit most from BCI technology (individuals with SCI). They highlight the difficulty in directly translating results from healthy subjects to participants with SCI and the challenges that, therefore, arise in providing BCIs to such individuals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The small (21 kDa) guanine nucleotide-binding protein (small G protein) superfamily comprises 5 subfamilies (Ras, Rho, ADP ribosylation factors [ARFs], Rab, and Ran) that act as molecular switches to regulate numerous cellular responses. Cardiac myocyte hypertrophy is associated with cell growth and changes in the cytoskeleton and myofibrillar apparatus. In other cells, the Ras subfamily regulates cell growth whereas the Rho subfamily (RhoA, Rac1, and Cdc42) regulates cell morphology. Thus, the involvement of small G proteins in hypertrophy has become an area of significant interest. Hearts from transgenic mice expressing activated Ras develop features consistent with hypertrophy, whereas mice overexpressing RhoA develop lethal heart failure. In isolated neonatal rat cardiac myocytes, transfection or infection with activated Ras, RhoA, or Rac1 induces many of the features of hypertrophy. We discuss the mechanisms of activation of the small G proteins and the downstream signaling pathways involved. The latter may include protein kinases, particularly the mitogen-activated or Rho-activated protein kinases. We conclude that although there is significant evidence implicating Ras, RhoA, and Rac1 in hypertrophy, the mechanisms are not fully understood.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The right ventricle has become an increasing focus in cardiovascular research. In this position paper, we give a brief overview of the specific pathophysiological features of the right ventricle, with particular emphasis on functional and molecular modifications as well as therapeutic strategies in chronic overload, highlighting the differences from the left ventricle. Importantly, we put together recommendations on promising topics of research in the field, experimental study design, and functional evaluation of the right ventricle in experimental models, from non-invasive methodologies to haemodynamic evaluation and ex vivo set-ups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The failing heart is characterized by complex tissue remodelling involving increased cardiomyocyte death, and impairment of sarcomere function, metabolic activity, endothelial and vascular function, together with increased inflammation and interstitial fibrosis. For years, therapeutic approaches for heart failure (HF) relied on vasodilators and diuretics which relieve cardiac workload and HF symptoms. The introduction in the clinic of drugs interfering with beta-adrenergic and angiotensin signalling have ameliorated survival by interfering with the intimate mechanism of cardiac compensation. Current therapy, though, still has a limited capacity to restore muscle function fully, and the development of novel therapeutic targets is still an important medical need. Recent progress in understanding the molecular basis of myocardial dysfunction in HF is paving the way for development of new treatments capable of restoring muscle function and targeting specific pathological subsets of LV dysfunction. These include potentiating cardiomyocyte contractility, increasing cardiomyocyte survival and adaptive hypertrophy, increasing oxygen and nutrition supply by sustaining vessel formation, and reducing ventricular stiffness by favourable extracellular matrix remodelling. Here, we consider drugs such as omecamtiv mecarbil, nitroxyl donors, cyclosporin A, SERCA2a (sarcoplasmic/endoplasmic Ca(2 +) ATPase 2a), neuregulin, and bromocriptine, all of which are currently in clinical trials as potential HF therapies, and discuss novel molecular targets with potential therapeutic impact that are in the pre-clinical phases of investigation. Finally, we consider conceptual changes in basic science approaches to improve their translation into successful clinical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chapter describes development of care bundle documentation, through an iterative, user-centred design process, to support the recognition and treatment of acute kidney injury (AKI). The chapter details stages of user and stakeholder consultation, employed to develop a design response that was sensitive to user experience and need, culminating in simulation testing of a near final prototype. The development of supplementary awareness-raising materials, relating to the main care bundle tool is also discussed. This information design response to a complex clinical decision-making process is contrasted to other approaches to promoting AKI care. The need for different but related approaches to the working tool itself and the tool’s communication are discussed. More general recommendations are made for the development of communication tools to support complex clinical processes.