935 resultados para Myb domain
Resumo:
We describe the construction of a soluble protein carrying the N-terminal extracellular domain (ECD) of the α7 subunit of the nicotinic acetylcholine receptor. The approach was to fuse the α7 ECD at the C and N termini of several monomeric and pentameric soluble carrier proteins and to investigate the soluble expression of the product in Escherichia coli. An initial screening of six carrier proteins resulted in the selection of a fusion protein comprising, from the N to the C terminus, the maltose binding protein, a 17-aa linker containing an enterokinase binding site, and the α7 ECD. This protein is soluble upon expression in bacteria and is purified by affinity chromatography. It binds the competitive nicotinic antagonist α-bungarotoxin with 2.5 μM affinity and displays a CD spectrum corresponding to a folded protein. The method might be suitable to produce large quantities of protein for crystallization and immunochemical experiments.
Resumo:
The luminal domains of membrane peptidylglycine α-amidating monooxygenase (PAM) are essential for peptide α-amidation, and the cytosolic domain (CD) is essential for trafficking. Overexpression of membrane PAM in corticotrope tumor cells reorganizes the actin cytoskeleton, shifts endogenous adrenocorticotropic hormone (ACTH) from mature granules localized at the tips of processes to the TGN region, and blocks regulated secretion. PAM-CD interactor proteins include a protein kinase that phosphorylates PAM (P-CIP2) and Kalirin, a Rho family GDP/GTP exchange factor. We engineered a PAM protein unable to interact with either P-CIP2 or Kalirin (PAM-1/K919R), along with PAM proteins able to interact with Kalirin but not with P-CIP2. AtT-20 cells expressing PAM-1/K919R produce fully active membrane enzyme but still exhibit regulated secretion, with ACTH-containing granules localized to process tips. Immunoelectron microscopy demonstrates accumulation of PAM and ACTH in tubular structures at the trans side of the Golgi in AtT-20 cells expressing PAM-1 but not in AtT-20 cells expressing PAM-1/K919R. The ability of PAM to interact with P-CIP2 is critical to its ability to block exit from the Golgi and affect regulated secretion. Consistent with this, mutation of its P-CIP2 phosphorylation site alters the ability of PAM to affect regulated secretion.
Resumo:
Sm and Sm-like proteins are members of a family of small proteins that is widespread throughout eukaryotic kingdoms. These proteins form heteromers with one another and bind, as heteromeric complexes, to various RNAs, recognizing primarily short U-rich stretches. Interestingly, completion of several genome projects revealed that archaea also contain genes that may encode Sm-like proteins. Herein, we studied the properties of one Sm-like protein derived from the archaebacterium Archaeoglobus fulgidus and overexpressed in Escherichia coli. This single small protein closely reflects the properties of an Sm or Sm-like protein heteromer. It binds to RNA with a high specificity for oligo(U), and assembles onto the RNA to form a complex that exhibits, as judged by electron microscopy, a ring-like structure similar to the ones observed with the Sm core ribonucleoprotein and the like Sm (LSm) protein heteromer. Importantly, multivariate statistical analysis of negative-stain electron-microscopic images revealed a sevenfold symmetry for the observed ring structure, indicating that the proteins form a homoheptamer. These results support the structural model of the Sm proteins derived from crystallographic studies on Sm heterodimers and demonstrate that the Sm protein family evolved from a single ancestor that was present before the eukaryotic and archaeal kingdoms separated.
Resumo:
The yeast heat shock transcription factor (HSF) belongs to the winged helix family of proteins. HSF binds DNA as a trimer, and additional trimers can bind DNA co-operatively. Unlike other winged helix–turn–helix proteins, HSF’s wing does not appear to contact DNA, as based on a previously solved crystal structure. Instead, the structure implies that the wing is involved in protein–protein interactions, possibly within a trimer or between adjacent trimers. To understand the function of the wing in the HSF DNA-binding domain, a Saccharomyces cerevisiae strain was created that expresses a wingless HSF protein. This strain grows normally at 30°C, but shows a decrease in reporter gene expression during constitutive and heat-shocked conditions. Removal of the wing does not affect the stability or trimeric nature of a protein fragment containing the DNA-binding and trimerization domains. Removal of the wing does result in a decrease in DNA-binding affinity. This defect was mainly observed in the ability to form the first trimer-bound complex, as the formation of larger complexes is unaffected by the deletion. Our results suggest that the wing is not involved in the highly co-operative nature of HSF binding, but may be important in stabilizing the first trimer bound to DNA.
Resumo:
Binding of erythropoietin (Epo) to the Epo receptor (EpoR) is crucial for production of mature red cells. Although it is well established that the Epo-bound EpoR is a dimer, it is not clear whether, in the absence of ligand, the intact EpoR is a monomer or oligomer. Using antibody-mediated immunofluorescence copatching (oligomerizing) of epitope-tagged receptors at the surface of live cells, we show herein that a major fraction of the full-length murine EpoR exists as preformed dimers/oligomers in BOSC cells, which are human embryo kidney 293T-derived cells. This observed oligomerization is specific because, under the same conditions, epitope-tagged EpoR did not oligomerize with several other tagged receptors (thrombopoietin receptor, transforming growth factor β receptor type II, or prolactin receptor). Strikingly, the EpoR transmembrane (TM) domain but not the extracellular or intracellular domains enabled the prolactin receptor to copatch with EpoR. Preformed EpoR oligomers are not constitutively active and Epo binding was required to induce signaling. In contrast to tyrosine kinase receptors (e.g., insulin receptor), which cannot signal when their TM domain is replaced by the strongly dimerizing TM domain of glycophorin A, the EpoR could tolerate the replacement of its TM domain with that of glycophorin A and retained signaling. We propose a model in which TM domain-induced dimerization maintains unliganded EpoR in an inactive state that can readily be switched to an active state by physiologic levels of Epo.