987 resultados para Morphologie des films minces
Resumo:
The ethanol sensing properties of porous Cr2O3 thin films deposited by the ultrasonic nebulized spray pyrolysis of an aqueous combustion mixture is reported. The impact of the precursor selection and various deposition parameters on the film crystallinity, surface morphology and stoichiometry are studied using thermo-gravimetric analysis, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and atomic force microscopy techniques. The film morphology exhibits a highly porous nature, as a result of the exothermic combustion reaction during film deposition. The gas sensing properties of these films are investigated in the temperature range of 200-375 degrees C for ethanol. The films show two different regions of response for ethanol above and below 300 degrees C. A good relationship between the response and the ethanol concentration is observed, and is modeled using an empirical relation. The possible mechanism and the surface chemical reactions of ethanol over the chromium oxide surface are discussed.
Effect of low oxygen pressure on structural and magnetic properties of quenched SrFe12O19 thin films
Resumo:
Strontium hexaferrite thin films have been grown on glass substrates at room temperature in oxygen environment by pulsed laser deposition method. The effect of oxygen pressure (p(o2)) on the structural and magnetic properties has been investigated. The as-deposited films were found to be amorphous in nature. The crystallization of these films was achieved by annealing at a temperature of 850 A degrees C in air. The thickness of the film increased with p(o2). The film grown at p(o2) = 0.455 Pa had a clear hexagonal structure. The values of coercivity for the films were found to increase with p(o2).
Resumo:
Anodization of aluminum alloys is a common surface treatment procedure employed for the protection against corrosion. A thin amorphous layer of alumina is formed on the surface of alloy, which seals the alloy surface from the surrounding. This alumina layer being harder than the base aluminum alloy can be useful as a tribological coating. But since this alumina layer is randomly formed with disordered voids and pores, predicting the mechanical properties is difficult. Specific anodizing conditions can be used to form highly ordered anodic nanoporous alumina films 1] on the aluminum alloy surface. These nanoporous alumina layer can be effectively used as a tribological coating, because of the highly ordered controllable geometry and the empty pores which can be used as reservoirs for lubricant.
Resumo:
Silver Indium Di-sulfide (AgInS2) thin films are deposited using ultrasonic spray pyrolysis technique and the effect of substrate temperature (T-s) on film growth is studied by varying the temperature from 250 to 400 degrees C. From the structural analysis, orthorhombic AgInS2 phase is identified with preferential orientation along (002) plane. Further analysis with Raman revealed the coexistence of Cu-Au ordered and chalcopyrite structures in the films. Stoichiometric films are obtained at T-s of 300 degrees C. Above 300 degrees C, the film conductivity changed from p to n-type and the grain size decreased. The band gap of AgInS2 films varied from 1.55 to 1.89 eV and absorption coefficient is found to be >10(4) cm(-1). The films have sheet resistance in the range of 0.05 to 1300 Omega/square Both p and n type films are prepared through this technique without any external doping. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
The electrocaloric effect (ECE) of 0.85PbMg(1/3)Nb(2/3)O(3-)0.15PbTiO(3) (0.85PMN-0.15PT) thin films deposited on (111) Pt/TiO2/SiO2/Si substrate by pulsed laser deposition (PLD) has been calculated. The reversible adiabatic temperature was calculated indirectly using the Maxwell's relation Delta T = -T/C rho integral(E2)(E1) (partial derivative P/partial derivative T)(sigma,E)dE. Permittivity and P-E measurements show an anomaly at 11 degrees C on heating only. This anomaly previously reported are claimed to arise due to the PNR depolarization upon heating. The absence of this anomaly during cooling suggests that no structural phase transition takes place. A negative electrocaloric effect is observed which is explained by the increase in the entropy term.
Resumo:
Chalcopyrite Cu(In,Al)Se-2 (CIAS) thin films are grown on stainless steel substrate through one-step electrodeposition at room temperature. Indium is partially replaced with aluminum to increase the band gap of CuInSe2 without creating significant change in the original structure. The deposition potential is optimized at -0.8 V (vs. SCE) and annealing of the films is performed in vacuum to remove binary phases present in the as-deposited films. In/Al ratio is varied from 1/9 to 8/2, to find the suitability for solar cell fabrication. For In/Al ratio of less than 8/2, CuAlSe2 phase is formed in the film in addition to the CIAS phase. Depth profile X-ray photoelectron spectroscopy analysis of the CIAS sample prepared with In/Al ratio of 8/2 in the precursor solution confirmed the existence of single phase CIAS throughout the film. This film showed p-type conductivity while the rest of the samples with In/Al ratio less than 8/2 showed n-type conductivity. The band gap of the film varied from 1.06 to 1.45 eV, with variation in deposition potential. Structural, optical, morphological, compositional and electrical characterizations are carried out to establish the suitability of this film for solar cell fabrication. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
In the present work, Platinum (Pt)/Copper (II) oxide (CuO) thin film based ethanol sensors were fabricated by sputtering of Pt in varying concentrations over pre-sputtered nanostructured CuO films. The responses of these sensors as a function of Pt concentrations were studied using operating temperature modulation (200-450 °C) and ethanol concentration modulation (100-2500 ppm). During these modulations, it was found that the sensing response was maximum at operating temperature near 400 °C for all the samples irrespective of the Pt concentration dispersed over them. Moreover, the sensing behavior improves for lower Pt concentration (Pt/CuO-60s) and deteriorates for higher Pt concentration (Pt/CuO-120s). In comparison with bare CuO sample, the sensitivity of Pt/CuO-60s increased up to 22% in the linear range and 33% for maximum ethanol concentration. Hence, the well dispersed optimum Pt additive concentration improves the overall sensing behavior including sensitivity, linear working range and response as well as recovery time.
Resumo:
Thin films of CexZn1-xO thin films were deposited on glass substrates at 400 degrees C by nebulizer spray pyrolysis technique. Ce doping concentration (x) was varied from 0 to 10%, in steps of 2.5%. X-ray diffraction reveals that all the films have polycrystalline nature with hexagonal crystal structure and high preferential orientation along (002) plane. Optical parameters such as; transmittance, band gap energy, refractive index (n), extinction coefficient (k), complex dielectric constants (epsilon(r), epsilon(i)) and optical conductivity (sigma(r), sigma(i)) have been determined and discussed with respect to Ce concentration. All the films exhibit transmittance above 80% in the wavelength range from 330 to 2500 nm. Optical transmission measurements indicate the decrease of direct band gap energy from 3.26 to 3.12 eV with the increase of Ce concentration. Photoluminescence spectra show strong near band edge emission centered similar to 398 nm and green emission centered similar to 528 nm with excitation wavelength similar to 350 nm. High resolution scanning electron micrographs indicate the formation of vertical nano-rod like structures on the film surface with average diameter similar to 41 nm. Electrical properties of the Ce doped ZnO film have been studied using ac impedance spectroscopy in the frequency range from 100 Hz-1 MHz at different temperatures. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Amorphous Ge15Te85-xSix thin film switching devices (1 <= x <= 6) have been deposited in sandwich geometry, on glass substrates with aluminum electrodes, by flash evaporation technique. These devices exhibit memory type electrical switching, like bulk Ge15Te85-xSix glasses. However, unlike the bulk glasses, a-Ge15Te85-xSix films exhibit a smooth electrical switching behavior. The electrical switching fields of a-Ge15Te85-xSix thin film samples are also comparable with other chalcogenide samples used in memory applications. The switching fields of a-Ge15Te85-xSix films have been found to increase with increasing Si concentration. Also, the optical band gap of a-Ge15Te85-xSix films is found to increase with Si content. The observed results have been understood on the basis of increase in network connectivity and rigidity with Si addition. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Lithium manganese oxide (Li2-xMnO3-y) thin films have been deposited from activated Li2MnO3 powder by radio frequency magnetron sputtering for the first time in the literature and subjected to electrochemical characterization. Physicochemical characterization by X-ray diffraction has revealed the formation of the thin films with crystallographic phase identical to that of the powder target made of Li2-xMnO3-y. The Li:Mn atomic ratio for the powder and film are calculated by X-ray photoelectron spectroscopy and it is found to be 1.6:1.0. From galvanostatic charge discharge studies, a specific discharge capacity of 139 mu Ah mu m(-1) cm(-2) was obtained when cycled between 2.00 and 3.50 V vs Li/Li+. Additionally the rate capability of the thin film electrodes was studied by subjecting the cells to charge-discharge cycling at different current densities in the range from 10 mu A cm(-2) to 100 mu A cm(-2). (C) 2013 The Electrochemical Society. All rights reserved.
Resumo:
NiTi thin-films were deposited by DC magnetron sputtering from single alloy target (Ni/Ti: 45/55 aL.%). The rate of deposition and thickness of sputter deposited films were maintained to similar to 35 nm min(-1) and 4 mu m respectively. A set of sputter deposited NiTi films were selected for specific chemical treatment with the solution comprising of de-ionized water, HF and HNO3 respectively. The influence of chemical treatment on surface characteristics of NiTi films before and after chemical treatment was investigated for their structure, micro-structure and composition using different analytical techniques. Prior to chemical treatment, the composition of NiTi films using energy dispersive X-ray dispersive spectroscopy (EDS), were found to be 51.8 atomic percent of Ti and 48.2 atomic percent of Ni. The structure and morphology of these films were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD investigations, demonstrated the presence of dominant Austenite (110) phase along with Martensite phase, for untreated NiTi films whereas some additional diffraction peaks viz. (100), (101), and (200) corresponding to Rutile and Anatase phase of Titanium dioxide (TiO2) along with parent Austenite (110) phase were observed for chemically treated NiTi films. FTIR studies, it can be concluded that chemically treated films have higher tendency to form metal oxide/hydroxide than the untreated NiTi films. XPS investigations, demonstrated the presence of Ni-free surface and formation of a protective metal oxide (TiO2) layer on the surface of the films, in both the cases. The extent of the formation of surface oxide layer onto the surface of NiTi films has enhanced after chemical treatment. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Polyvinyl butyral/functionalized mesoporous silica hybrid composite films have been fabricated by solution casting technique with various weight percentages of functionalized silica. A polyol (tripentaerythritol-electron rich component), which acts as an electron donor to the polymer backbone, was added to enhance the conductivity. The prepared composites were characterized by Fourier transformed infrared spectroscopy and the morphology was evaluated by scanning electron microscopy. Dielectric properties of these freestanding composites were studied using the two-probe method. The dielectric constant and impedance value decreased with the increase in applied frequency as well as with the increase in functionalized silica content in the polyvinyl butyral matrix. An increase in conductivity of the PVB/functionalized silica composites was also observed. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
The present experimental study investigates the influence of post-deposition annealing on the transverse piezoelectric coefficient (d(31)) value of ZnO thin films deposited on a flexible metal alloy substrate, and its relationship with the vibration sensing performance. Highly c-axis oriented and crystalline ZnO thin films were deposited on flexible Phynox alloy substrate via radio frequency (RF) reactive magnetron sputtering. ZnO thin film samples were annealed at different temperatures ranging from 100 degrees C to 500 degrees C, resulting in the temperature of 300 degrees C determined as the optimum annealing temperature. The crystallinity, morphology, microstructure, and rms surface roughness of annealed ZnO thin films were systematically investigated by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Atomic Force Microscopy (AFM), respectively. The piezoelectric d(31) coefficient value was measured by 4-point bending method. ZnO thin film annealed at 300 degrees C was highly c-axis oriented, crystalline, possesses fine surface morphology with uniformity in the grain size. This film showed higher d(31) coefficient value of 7.2 pm V-1. A suitable in-house designed and developed experimental set-up, for evaluating the vibration sensing performance of annealed ZnO thin films is discussed. As expected the ZnO thin film annealed at 300 degrees C showed relatively better result for vibration sensing studies. It generates comparatively higher peak output voltage of 147 mV, due to improved structural and morphological properties, and higher piezoelectric d(31) coefficient value. (C) 2014 Elsevier B. V. All rights reserved.
Resumo:
Oriented Strontium Ferrite films with the c axis orientation were deposited with varying oxygen partial pressure on Al2O3(0001) substrate using Pulsed Laser Deposition technique. The angle dependent magnetic hysteresis, remanent coercivity, and temperature dependent coercivity had been employed to understand the magnetization reversal of these films. It was found that the Strontium Ferrite thin film grown at lower (higher) oxygen partial pressure shows Stoner-Wohlfarth type (Kondorsky like) reversal. The relative importance of pinning and nucleation processes during magnetization reversal is used to explain the type of the magnetization reversal with different oxygen partial pressure during growth. (C) 2014 AIP Publishing LLC.