947 resultados para Morphological clock
Resumo:
Biomarkers of blood lipid modification and oxidative stress have been associated with increased cardiovascular morbidity. We sought to determine whether these biomarkers were related to functional indices of stenosis severity among patients with stable coronary artery disease. We studied 197 consecutive patients with stable coronary artery disease due to single vessel disease. Fractional flow reserve (FFR) ≤ 0.80 was assessed as index of a functionally significant lesion. Serum levels of secretory phospholipase A2 (sPLA2) activity, secretory phospholipase A2 type IIA (sPLA2-IIA), myeloperoxydase (MPO), lipoprotein-associated phospholipase A2 (Lp-PLA2), and oxidized low-density lipoprotein (OxLDL) were assessed using commercially available assays. Patients with FFR > 0.8 had higher sPLA2 activity, sPLA2 IIA, and OxLDL levels than patients with FFR ≤ 0.8 (21.25 [16.03-27.28] vs 25.85 [20.58-34.63] U/mL, p < 0.001, 2.0 [1.5-3.4] vs 2.6 [2.0-3.4] ng/mL, p < 0.01; and 53.0 [36.0-71.0] vs 64.5 [50-89.25], p < 0.001 respectively). Patients with FFR > 0.80 had similar Lp-PLA2 and MPO levels versus those with FFR ≤ 0.8. sPLA2 activity, sPLA2 IIA significantly increased area under the curve over baseline characteristics to predict FFR ≤ 0.8 (0.67 to 0.77 (95 % confidence interval [CI]: 0.69-0.85) p < 0.01 and 0.67 to 0.77 (95 % CI: 0.69-0.84) p < 0.01, respectively). Serum sPLA2 activity as well as sPLA2-IIA level is related to functional characteristics of coronary stenoses in patients with stable coronary artery disease.
Resumo:
Nerve injury is known to produce a variety of electrophysiological and morphological neuronal alterations (reviewed by Titmus and Faber, 1990; Bulloch and Ridgeway, 1989; Walters, 1994). Determining if these alterations are adaptive and how they are activated and maintained could provide important insight into basic cellular mechanisms of injury-induced plasticity. Furthermore, characterization of injury-induced plasticity provides a useful assay system for the identification of possible induction signals underlying these neuronal changes. Understanding fundamental mechanisms and underlying induction signals of injury-induced neuronal plasticity could facilitate development of treatment strategies for neural injury and neuropathic pain in humans.^ This dissertation characterizes long-lasting, injury-induced neuronal alterations using the nervous system of Aplysia californica as a model. These changes are examined at the behavioral, electrophysiological, and morphological levels. Injury-induced changes in the electrophysiological properties of neurons were found that increased the signaling effectiveness of the injured neurons. This increase in signalling effectiveness could act to compensate for partial destruction of the injured neuron's peripheral processes. Recovery of a defensive behavioral response which serves to protect the animal from further injury was found within 2 weeks of injury. For the behavioral recovery to occur, new neural pathways must have been formed between the denervated area and the CNS. This was found to be mediated at least in part by new axonal growth which extended from the injured cell back along the original pathway (i.e. into the injured nerve). In addition, injury produced central axonal sprouting into different nerves that do not usually contain the injured neuron's axons. This could be important for (i) finding alternative pathways to the periphery when the original pathways are impassable and (ii) the formation of additional synaptic connections with post-synaptic targets which would further enhance the signalling effectiveness of the injured cell. ^
Resumo:
Despite antibiotic therapy and supportive intensive medical care, bacterial meningitis remains a disease with high mortality and morbidity. Rapid recognition of symptoms is crucial to direct physicians quickly towards appropriate diagnostic measures and, initially, empiric antibiotic therapy. It has become evident that time from arrival at the hospital to application of the first dose of antibiotics is a crucial independent factor that influences outcome. Here, we review the clinical and laboratory presentation of community-acquired bacterial meningitis and the antibiotic regiments that are currently recommended for its treatment; future therapeutic options are also discussed. Finally, suggestions for the approach to a patient with suspected bacterial meningitis are presented.
Resumo:
Spermatogenesis in Lake Magadi tilapia (Alcolapia grahami), a cichlid fish endemic to the highly alkaline and saline Lake Magadi in Kenya, was evaluated using light and transmission electron microscopy. Spermatogenesis, typified by its three major phases (spermatocytogenesis, meiosis and spermiogenesis), was demonstrated by the presence of maturational spermatogenic cells namely spermatogonia, spermatocytes, spermatids and spermatozoa. Primary spermatogonia, the largest of all the germ cells, underwent a series of mitotic divisions producing primary spermatocytes, which then entered two consecutive meiotic divisions to produce secondary spermatocytes and spermatids. Spermatids, in turn, passed through three structurally distinct developmental stages typical of type-I spermiogenesis to yield typical primitive anacrosomal spermatozoa of the externally fertilizing type (aquasperm). The spermatozoon of this fish exhibited a spheroidal head with the nucleus containing highly electron-dense chromatin globules, a midpiece containing ten ovoid mitochondria arranged in two rows and a flagellum formed by the typical 9 + 2 microtubule axoneme. In addition, the midpiece, with no cytoplasmic sheath, appeared to end blindly distally in a lobe-like pattern around the flagellum; a feature that was unique and considered adaptive for the spermatozoon of this species to the harsh external environment. These observations show that the testis of A. grahami often undergoes active spermatogenesis despite the harsh environmental conditions to which it is exposed on a daily basis within the lake. Further, the spermiogenic features and spermatozoal ultrastructure appear to be characteristic of Cichlidae and, therefore, may be of phylogenetic significance.
Resumo:
Very important aspects of the modern nanotechnology are control and prediction of arraying patterns of opto- and electroactive molecules in discrete objects on nanoscale level both on surface and solution. Consequqntly, a self-assembly of small molucules provides such an opportunity.For example, oligopyrenotides (OPs, short amphiphilic pyrene oligomers) represent a novel class of amphiphilic molecules which tend to aggegate in aqueous phase. As has been already shown, OPs are able to form 1D supramolecular polymer only under high salt concentration. Since programmed arraying of polyaromatic hydrocarbons in structurally defined objects could offer enhanced performance over the individual components, prediction and controlling of their spatial arrangement remains challenging. Herein we demonstrate that substitution type of the pyrene is crutial, and it determines a morphology of the assemblies. Thus, a 1.6-linkage causes a formation of large, free-standing 2D supromolecular polymers with a thickness 2 nm. These assemblies possess a high degree of an internal order: the interior consists of hydrophobic pyrenes and alkyl chains, whereas the exterior exists as a net of hydrophilic negatively charged phosphates. Contrary, a 1.8-linkage exclusiveley leads to a formation of long (up to a few micrometer), nanometer thick helical supramolecular polymers. These structures tend to form even more complex structures (bundles, superhelixes). Moreover for both molecules, the polymerizations occurs via a nucleation-elongation mechanism. To study Py3 self-assembly, we carried out whole set of spectroscopic (UV/vis, fluorescence, DLS) and microscopic experiments (AFM).
Resumo:
Herein we demonstrate that a substitution type of the pyrene in short amphiphilic oligomers determines a morphology of the assemblies formed. Thus, 1.6- and 2.7-linkages lead to a formation of micrometer-sized 2D supromolecular polymers with a constant thickness 2 nm (pictures A and B). These assemblies possess a high degree of an internal order: the interior consists of hydrophobic pyrenes and alkyl chains, whereas the exterior exists as a net of hydrophilic negatively charged phosphates. Contrary, a 1.8-linkage exclusiveley leads to a formation of long nanometer thick helical supramolecular polymers (picturee C). These structures tend to form even more complex assemblies (bundles, superhelixes). Moreover, for all samples the polymerization process occurs via a nucleation-elongation mechanism. To study Py3 self-assembly, we carried out whole set of spectroscopic (UV/vis, fluorescence, DLS) and microscopic experiments (AFM).
Resumo:
As our population ages, more individuals suffer from osteoporosis. This disease leads to impaired trabecular architecture and increased fracture risk. It is essential to understand how morphological and mechanical properties of the cancellous bone are related. Morphologyelasticity relationships based on bone volume fraction (BV/TV) and fabric anisotropy explain up to 98% of the variation in elastic properties. Yet, other morphological variables such as individual trabeculae segmentation (ITS) and trabecular bone score (TBS) could improve the stiffness predictions. A total of 743 micro-computed tomography reconstructions of cubic trabecular bone samples extracted from femur, radius, vertebrae and iliac crest were analysed. Their morphology was assessed via 25 variables and their stiffness tensor (inline image) was computed from six independent load cases using micro finite element analyses. Variance inflation factors were calculated to evaluate collinearity between morphological variables and decide upon their inclusion in morphology-elasticity relationships. The statistically admissible morphological variables were included in a multi-linear regression modelling the dependent variable inline image. The contribution of each independent variable was evaluated (ANOVA). Our results show that BV/TV is the best determinant of inline image (inline image=0.889), especially in combination with fabric (inline image=0.968). Including the other independent predictors hardly affected the amount of variance explained by the model (inline image=0.975). Across all anatomical sites, BV/TV explained 87% of the variance of the bone elastic properties. Fabric further described 10% of the bone stiffness, but the improvement in variance explanation by adding other independent factors was marginal (<1%). These findings confirm that BV/TV and fabric are the best determinants of trabecular bone stiffness and show, against common belief, that other morphological variables do not bring any further contribution. These overall conclusions remain to be confirmed for specific bone diseases and post-elastic properties.
Resumo:
Criteria for the diagnosis of serrated colorectal lesions (hyperplastic polyp, sessile serrated adenoma without or with dysplasia--which we called mixed polyp--and traditional serrated adenoma) for which consensus has been reached should be validated for applicability in daily practice in terms of inter-observer reproducibility and their association with clinical features and (epi)genetic events. A study set was created from a consecutive series of colorectal polyps (n = 1,926) by selecting all sessile serrated adenomas, traditional serrated adenomas and mixed polyps. We added consecutive series of hyperplastic polyps, classical adenomas and normal mucosa samples for a total of 200 specimens. With this series, we conducted an inter-observer study, encompassing ten pathologists with gastrointestinal pathology experience from five European countries, in three rounds in which all cases were microscopically evaluated. An assessment of single morphological criteria was included, and these were correlated with clinical parameters and the mutation status of KRAS, BRAF and PIK3CA and the methylation status of MLH1. Gender, age and localisation were significantly associated with certain types of lesions. Kappa statistics revealed moderate to good inter-observer agreement for polyp classification (κ = 0.56 to 0.63), but for single criteria, this varied considerably (κ = 0.06 to 0.82). BRAF mutations were frequently found in hyperplastic polyps (86 %, 62/72) and sessile serrated adenomas (80 %, 41/51). KRAS mutations occurred more frequently in traditional serrated adenomas (78 %, 7/9) and less so in classical adenomas (20 %, 10/51). Single morphological criteria for sessile serrated adenomas showed significant correlation with BRAF mutation (all p ≤ 0.001), and those for classical adenomas or traditional serrated adenoma correlated significantly with KRAS mutation (all p < 0.001). Therefore, single well-defined morphological criteria are predictive for genetic alterations in colorectal polyps.
Resumo:
Besides the master clock located in the suprachiasmatic nucleus (SCN) of the brain, additional clocks are distributed across the central nervous system and the body. The role of these 'secondary' clocks remains unclear. A new study shows that the lack of an internal clock in histamine neurons profoundly perturbs sleep.
Resumo:
The importance of small ruminants to the dairy industry has increased in recent years, especially in developing countries, where it has a high economic and social impact. Interestingly and despite the fact that the mammary gland is the specialised milk production organ, very few authors studied the modifications occurring in the mammary gland through the lactation period in production animals, particularly in the small ruminants, sheep (Ovis aries) and goat (Capra hircus). Nevertheless, understanding the different mammary gland patterns throughout lactation is essential to improve dairy production. In addition, associating these patterns with different milking frequencies, lactation number or different diets is also of high importance, directly affecting the dairy industry. The mammary gland is commonly composed of parenchyma and stroma, which includes the ductal system, with individual proportions of each changing during the different periods and yields in a lactation cycle. Indeed, during late gestation, as well as during early to mid-lactation, mammary gland expansion occurs, with an increase in the number of epithelial cells and lumen area, which leads to increment of the parenchyma tissue, as well as a reduction of stroma, corresponding macroscopically to the increase in mammary gland volume. Throughout late lactation, the mammary gland volume decreases owing to the regression of the secretory structure. In general, common mammary gland patterns have been shown for both goats and sheep throughout the several lactation stages, although the number of studies is limited. The main objective of this manuscript is to review the colostrogenesis and lactogenesis processes as well as to highlight the mammary gland morphological patterns underlying milk production during the lactation cycle for small ruminants, and to describe potential differences between goats and sheep, hence contributing to a better description of mammary gland development during lactation for these two poorly studied species.
Resumo:
PURPOSE To compare postoperative morphological and rheological conditions after eversion carotid endarterectomy versus conventional carotid endarterectomy using computational fluid dynamics. BASIC METHODS Hemodynamic metrics (velocity, wall shear stress, time-averaged wall shear stress and temporal gradient wall shear stress) in the carotid arteries were simulated in one patient after conventional carotid endarterectomy and one patient after eversion carotid endarterectomy by computational fluid dynamics analysis based on patient specific data. PRINCIPAL FINDINGS Systolic peak of the eversion carotid endarterectomy model showed a gradually decreased pressure along the stream path, the conventional carotid endarterectomy model revealed high pressure (about 180 Pa) at the carotid bulb. Regions of low wall shear stress in the conventional carotid endarterectomy model were much larger than that in the eversion carotid endarterectomy model and with lower time-averaged wall shear stress values (conventional carotid endarterectomy: 0.03-5.46 Pa vs. eversion carotid endarterectomy: 0.12-5.22 Pa). CONCLUSIONS Computational fluid dynamics after conventional carotid endarterectomy and eversion carotid endarterectomy disclosed differences in hemodynamic patterns. Larger studies are necessary to assess whether these differences are consistent and might explain different rates of restenosis in both techniques.
Resumo:
The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS) aims at the data collection and analysis of all available satellite navigation systems. In particular the new global and regional satellite navigation systems are of interest, i.e., the European Galileo, the Chinese BeiDou, the Japanese QZSS as well as satellite based augmentation systems. This article analyzes the orbit and clock quality of the Galileo products of four MGEX analysis centers for a common time period of 20 weeks. Orbit comparisons of the individual analysis centers have a consistency at the 5–30 cm level. Day boundary discontinuities range from 4 to 28 cm whereas 2-day orbit fit RMS values vary between 1 and 7 cm. The accuracy evaluated by satellite laser ranging residuals is on the one decimeter level with a systematic bias of about −5 cm for all analysis centers. In addition, systematic errors on the decimeter level related to solar radiation pressure mismodeling are present in all orbit products. Due to the correlation of radial orbit errors with the clock parameters, these errors are also visible as a bump in the Allan deviation of the Galileo satellite clocks at the orbital frequency.