958 resultados para Montmorillonite clay
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A região da Serra da Onça é localizada no nordeste do Estado de Minas Gerais, no vale formado pelos trabalhos dos rios São Francisco e seus afluentes Jequitaí e Rio das Velhas. Esta região é caracterizada por diversos ciclos erosivos. Uma topossequência representativa da área foi escolhida para este estudo, sendo constituida por 5 perfis de solos desenvolvidos de sedimentos Quaternários. 0 Perfil 1, um Typic Hapleustox, está localizado na superfície mais antiga. Os outros solos estão localizados no sedimento Holocênico, área aluvial do São Francisco. Estes solos são menos intemperizados e classificados como Plíntic Haplustult (Perfil 2), Oxic Plintaquult (Perfil 3); Fluventic Plinthustult (Perfil 4) e Fluventic Argiustol (Perfil 5). Análises mineralógicas foram efetuadas em todas as fraçõs do solo. O Perfil 1 apresenta, em sua fração areia, somente minerais resistentes ao intemperismo, enquanto que nos demais solos, menos intemperizados, ocorrem micas e plagioclásios. Tais minerais aumentam de acordo com a profundidade do solo e também do Perfil 1 ao Perfil 5 menos intemperizado. A caulinita é o mineral de argila dominante na fração argila de todos os solos estudados, com maior concentração no Perfil 1, mais intemperizado. Este mineral tende a decrescer em profundidade e na direção do Perfil 1. Micas, vermiculita e montmorilonita também ocorrem do Perfil 2 ao Perfil 5.
Resumo:
A serra da Bodoquena, localizada no Estado do Mato Grosso do Sul, apresenta particularidades nos seus solos, que diferem de outras regiões do bioma cerrado-pantanal. Este trabalho teve como objetivo ampliar o conhecimento dos solos formados sobre calcário, por meio da caracterização dos seus atributos físicos, químicos, mineralógicos e da matéria orgânica. Foi selecionada uma topossequência sobre calcário, onde foram abertas trincheiras no topo (P1), terço inferior (P2), sopé (P3) e baixada (P4 e P5). Os perfis foram descritos morfologicamente e analisados os atributos físicos, químicos e mineralógicos dos horizontes. de acordo com o Sistema Brasileiro de Classificação de Solos, os solos estudados foram classificados como: (P1) Organossolo Fólico Sáprico lítico - OOs; (P2) Chernossolo Háplico Órtico típico - MXo; (P3) Chernossolo Argilúvico Órtico típico - MTo; (P4) Gleissolo Melânico Carbonático chernossólico - GMk1; e (P5) Gleissolo Melânico Carbonático organossólico - GMk2. Todos os perfis estudados apresentaram cores escuras nos horizontes superficiais e mais avermelhadas ou acinzentadas em profundidade, em razão da drenagem, sempre associados com elevados valores de saturação por bases e tendo o cálcio como cátion predominante no complexo sortivo. Das frações húmicas, a humina representou a maior fração do carbono orgânico em todos os solos. A análise mineralógica constatou a presença de calcita na fração areia nos perfis GMk1 e GMk2 e caulinita, illita e montmorilonita, na fração argila de todos os solos. A ocorrência do Organossolo Fólico em ambiente não altimontano, diferente do relatado pelo Sistema Brasileiro de Classificação de Solos, sugere maior amplitude das condições ambientais para a ocorrência dessa subordem.
Resumo:
The modified Cam - Clay model was used to model experimental results of a saturated residual sandy soil from Sao Carlos - SP. Triaxial compression tests were performed using Bishop - Wesley cell with internal transducers to measure axial and radial strains. It was observed that the model fairly fitted experimental results, specially the principal stress difference at critical state. In general it was observed a good qualitative agreement between experimental and predicted strain values, considering compression or expansion of the samples. However, in all the stress path used, but 100 degrees and 140 degrees, the model yielded strains larger than that measured in the tests.
Resumo:
The dilatometer test results have been lately applied in foundation design for prediction of settlement and bearing capacity problems. The equipment, its calibration, test procedures and test data interpretation are simple. These advantages seem to explain the increasing use of the dilatometer (DMT) test as a routine technique for subsoil investigation. The DMT test boreholes were carried out on the grounds of the National Research Council (NRC) in Ottawa. Several test results based on laboratory, and other in situ tests available in the literature for the Leda clay deposit in Ottawa area were used to provide correlations between geotechnical properties and soil index parameters as proposed by Marchetti (1980). More appropriated relationships, even though preliminaries, are presented for the crust layer.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
2-Mercaptobenzothiazole loaded on previously polystyrene treated clay was prepared, characterized and used for sorption and preconcentration of Hg(II) Pb(II), Zn(II) and Cd(II) from an aqueous solution. The support used was a natural clay previously treated with sulphuric acid solution. Adsorptiou isotherms of metal ions from aqueous solutions as function of pH were studied at 298 K. Conditions for quantitative retention and elution were established for each metal by batch and column methods. The chemically treated clay was very selective to Hg(II) in solution in which Zn(II), Cd(II), Pb(II) and some transition metal ions were also present.
Resumo:
2-Mercaptobenzothiazole loaded on previously treated clay was prepared, characterized and used for sorption and preconcentration of Hg(II), Pb(II), Zn(II), Cd(II), Cu(II) and Mn(II) from an aqueous solution. The support used was a natural clay previously treated with sulphuric acid solution. Adsorption isotherms of metal ions from aqueous solutions as function of pH were studied at 298 K. Conditions for quantitative retention and elution were established for each metal by batch and column methods. The chemically treated clay was very selective to Hg(II) in solution in which Zn(II), Cd(II), Pb(II), Cu(II) and Mn(II) were also present. © 1995.
Resumo:
The mineralogical composition of the soil plow layer (0-20 cm) was analyzed for the following soil suborders (according to the Brazilian soil taxonomy): Neossolo Quartzarênico. Argissolo Vermelho-Amarelo, Cambissolo Háplico and Latossolo Vermelho-Amarelo which samples were collected from different regions of the Ceará State. The present study had the objectives of identifying potential sources of both total and non-exchangeable potassium forms for plants located at the different soil fractions. Then highest content of K occurred in the Cabissolo Háplico soil, including both the total and non-exchangeable K forms. In the Neossolo Quartzarênico. Argissolo Vermelho-Amarelo and Latossolo Vermelho-Amarelo, the highest contents of both forms of potassium were impregnated at the sand fraction. The amount of potassium found in the both sand and silt fractions has its origin in the orthoclase mineral which was detected in the mineralogical analysis. In the clay fractio, the origin of the potassium is illite and a inter-stratified mineral (mica+montmorillonite). As compared with the total content, the amount of non-exchangeable potassium is low for all the four soils. It was more concentrated at clay fraction of the Cambissolo soil. The potassium content sequence in the soil was the following: Cambissolo Háplico > Argissolo Vermelho-Amarelo > Neossolo Quartzarênico > Latossolo Vermelho-Amarelo. The results showed that the distribution of the forms of potassium among the soils differ as a function of the nature of the dominating minerals detected in the mineralogical analysis (illite and orthoclase) which was discussed above.
Resumo:
Relief is regarded as the abiotic factor most strongly influencing pedogenic processes at a local scale. The spatial correlations between the composition of the clay fraction (iron - Fe and aluminum - Al oxides, kaolinite and organic matter - OM) and contents of available phosphorus (P) of an Oxisol were evaluated at hillslope scale under sugarcane cultivation. A total of 119 samples were collected at intersection points on a 100. ×. 100. m georeferenced grid of regularly spaced points 10. m apart in the 0.2-0.4. m depth in an area consisting of two landform components namely: component I (an area with a linear hillslope curvature), and component II (one with a concave-convex hillslope curvature). Soil OM and available P contents were subjected to descriptive statistics and geostatistical analyses in order to assess their variability and spatial dependence. All attributes studied were spatially dependent. Available phosphorus had positive spatial correlation with high crystalline goethite, hematite and gibbsite. Identifying small hillslope curvatures is useful with a view to better understanding their relationships with soil organic matter and available phosphorus, as well as kaolinite and Fe and Al oxide attributes. A simple correlation analysis by itself is inadequate to relate attributes, which requires a supplemental, geostatistical technique. © 2012 Elsevier B.V..
Resumo:
Much has been talking about the advantages of polymeric nanocomposites, but little is known about the influence of nanoparticles on the stability of these materials. In this sense, we studied the influence of both oxides of zirconium and titanium, known to have photocatalytic properties, as well as the influence of synthetic clay Laponite on the photodegradation of styrene-butadiene rubber (SBR). SBR nanocomposites were prepared by the colloidal route by mixing commercial polymer lattices and nanometric anatase TiO2, monoclinic ZrO2 or exfoliated Laponite clays colloidal suspensions. To better understand the degradation mechanisms that occur in these nanocomposites, the efficiency of different photocatalysts under ultraviolet radiation was monitored by FT-IR and UV-vis spectroscopies and by differential scanning calorimetric. It was observed that TiO2 and ZrO2 nanoparticles undoubtedly acted as catalysts during the photodegradation process with different efficiencies and rates. However, when compared to pure SBR samples, the polymer degradation mechanism was unaffected. Unlike studies with nanocomposites montmorillonite, exfoliated laponite clay effectively acts as a photostabilizer of polymer UV photodegradation. Copyright © 2012 Wiley Periodicals, Inc.
Enhanced bulk and superficial hydrophobicities of starch-based bionanocomposites by addition of clay
Resumo:
In this work, thermoplastic starch (TPS)-clay bionanocomposites were obtained by an innovative methodology using a combination of methodologies commonly used in the composites and nanocomposites preparations. The main objectives or novelties were to confirm efficiency of the processing methodology by field emission gun scanning electron microscopy and investigate the effect of clay content on the spectroscopic, bulk and surface hydrophilic/hydrophobic properties of these bionanocomposites. Raman and FTIR spectroscopies confirmed the changes in the spectroscopic properties of the TPS bionanocomposites with the addition of the clay materials. Water absorption and contact angle measurements were also used to analyze the effect of the clay content on the hydrophilic properties of the TPS bionanocomposites. The results also showed that the addition of the cloisite-Na+ clay increased the bulk and surface hydrophobicities of the TPS matrix, which may increase its industrial application, particularly in manufacturing of food containers. © 2013 Elsevier B.V.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)