961 resultados para Monte - Carlo study
Resumo:
In this article we review the current status in the modelling of both thermotropic and lyotropic Liquid crystal. We discuss various coarse-graining schemes as well as simulation techniques such as Monte Carlo (MC) and Molecular dynamics (MD) simulations.In the area of MC simulations we discuss in detail the algorithm for simulating hard objects such as spherocylinders of various aspect ratios where excluded volume interaction enters in the simulation through overlap test. We use this technique to study the phase diagram, of a special class of thermotropic liquid crystals namely banana liquid crystals. Next we discuss a coarse-grain model of surfactant molecules and study the self-assembly of the surfactant oligomers using MD simulations. Finally we discuss an atomistically informed coarse-grained description of the lipid molecules used to study the gel to liquid crystalline phase transition in the lipid bilayer system.
Resumo:
This paper presents a study of the wave propagation responses in composite structures in an uncertain environment. Here, the main aim of the work is to quantify the effect of uncertainty in the wave propagation responses at high frequencies. The material properties are considered uncertain and the analysis is performed using Neumann expansion blended with Monte Carlo simulation under the environment of spectral finite element method. The material randomness is included in the conventional wave propagation analysis by different distributions (namely, the normal and the Weibul distribution) and their effect on wave propagation in a composite beam is analyzed. The numerical results presented investigates the effect of material uncertainties on different parameters, namely, wavenumber and group speed, which are relevant in the wave propagation analysis. The effect of the parameters, such as fiber orientation, lay-up sequence, number of layers, and the layer thickness on the uncertain responses due to dynamic impulse load, is thoroughly analyzed. Significant changes are observed in the high frequency responses with the variation in the above parameters, even for a small coefficient of variation. High frequency impact loads are applied and a number of interesting results are presented, which brings out the true effects of uncertainty in the high frequency responses. [DOI: 10.1115/1.4003945]
Resumo:
Finite element modeling can be a useful tool for predicting the behavior of composite materials and arriving at desirable filler contents for maximizing mechanical performance. In the present study, to corroborate finite element analysis results, quantitative information on the effect of reinforcing polypropylene (PP) with various proportions of nanoclay (in the range of 3-9% by weight) is obtained through experiments; in particular, attention is paid to the Young's modulus, tensile strength and failure strain. Micromechanical finite element analysis combined with Monte Carlo simulation have been carried out to establish the validity of the modeling procedure and accuracy of prediction by comparing against experimentally determined stiffness moduli of nanocomposites. In the same context, predictions of Young's modulus yielded by theoretical micromechanics-based models are compared with experimental results. Macromechanical modeling was done to capture the non-linear stress-strain behavior including failure observed in experiments as this is deemed to be a more viable tool for analyzing products made of nanocomposites including applications of dynamics. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Motivated by experiments on Josephson junction arrays, and cold atoms in an optical lattice in a synthetic magnetic field, we study the ``fully frustrated'' Bose-Hubbard model with half a magnetic flux quantum per plaquette. We obtain the phase diagram of this model on a two-leg ladder at integer filling via the density matrix renormalization group approach, complemented by Monte Carlo simulations on an effective classical XY model. The ground state at intermediate correlations is consistently shown to be a chiral Mott insulator (CMI) with a gap to all excitations and staggered loop currents which spontaneously break time-reversal symmetry. We characterize the CMI state as a vortex supersolid or an indirect exciton condensate, and discuss various experimental implications.
Resumo:
We present an extensive study of Mott insulator (MI) and superfluid (SF) shells in Bose-Hubbard (BH) models for bosons in optical lattices with harmonic traps. For this we apply the inhomogeneous mean-field theory developed by Sheshadri et al. Phys. Rev. Lett. 75, 4075 (1995)]. Our results for the BH model with one type of spinless bosons agree quantitatively with quantum Monte Carlo simulations. Our approach is numerically less intensive than such simulations, so we are able to perform calculations on experimentally realistic, large three-dimensional systems, explore a wide range of parameter values, and make direct contact with a variety of experimental measurements. We also extend our inhomogeneous mean-field theory to study BH models with harmonic traps and (a) two species of bosons or (b) spin-1 bosons. With two species of bosons, we obtain rich phase diagrams with a variety of SF and MI phases and associated shells when we include a quadratic confining potential. For the spin-1 BH model, we show, in a representative case, that the system can display alternating shells of polar SF and MI phases, and we make interesting predictions for experiments in such systems.
Resumo:
Many problems of state estimation in structural dynamics permit a partitioning of system states into nonlinear and conditionally linear substructures. This enables a part of the problem to be solved exactly, using the Kalman filter, and the remainder using Monte Carlo simulations. The present study develops an algorithm that combines sequential importance sampling based particle filtering with Kalman filtering to a fairly general form of process equations and demonstrates the application of a substructuring scheme to problems of hidden state estimation in structures with local nonlinearities, response sensitivity model updating in nonlinear systems, and characterization of residual displacements in instrumented inelastic structures. The paper also theoretically demonstrates that the sampling variance associated with the substructuring scheme used does not exceed the sampling variance corresponding to the Monte Carlo filtering without substructuring. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Density distribution, fluid structure and solvation forces for fluids confined in Janus slit-shaped pores are investigated using grand canonical Monte Carlo simulations. By varying the degree of asymmetry between the two smooth surfaces that make up the slit pores, a wide variety of adsorption situations are observed. The presence of one moderately attractive surface in the asymmetric pore is sufficient to disrupt the formation of frozen phases observed in the symmetric case. In the extreme case of asymmetry in which one wall is repulsive, the pore fluid can consist of a frozen contact layer at the attractive surface for smaller surface separations (H) or a frozen contact layer with liquid-like and gas-like regions as the pore width is increased. The superposition approximation, wherein the solvation pressure and number density in the asymmetric pores can be obtained from the results on symmetric pores, is found to be accurate for H > 4 sigma(ff), where sigma(ff) is the Lennard-Jones fluid diameter and within 10% accuracy for smaller surface separations. Our study has implications in controlling stick slip and overcoming static friction `stiction' in micro and nanofluidic devices.
Resumo:
A combination of ab initio and classical Monte Carlo simulations is used to investigate the effects of functional groups on methane binding. Using Moller-Plesset (MP2) calculations, we obtain the binding energies for benzene functionalized with NH2, OH, CH3, COOH, and H2PO3 and identify the methane binding sites. In all cases, the preferred binding sites are located above the benzene plane in the vicinity of the benzene carbon atom attached to the functional group. Functional groups enhance methane binding relative to benzene (-6.39 kJ/mol), with the largest enhancement observed for H2PO3 (-8.37 kJ/mol) followed by COOH and CH3 (-7.77 kJ/mol). Adsorption isotherms are obtained for edge-functionalized bilayer graphene nanoribbons using grand canonical Monte Carlo simulations with a five-site methane model. Adsorbed excess and heats of adsorption for pressures up to 40 bar and 298 K are obtained with functional group concentrations ranging from 3.125 to 6.25 mol 96 for graphene edges functionalized with OH, NH2, and COOH. The functional groups are found to act as preferred adsorption sites, and in the case of COOH the local methane density in the vicinity of the functional group is found to exceed that of bare graphene. The largest enhancement of 44.5% in the methane excess adsorbed is observed for COOH-functionalized nanoribbons when compared to H terminated ribbons. The corresponding enhancements for OH- and NH2-functionalized ribbons are 10.5% and 3.7%, respectively. The excess adsorption across functional groups reflects the trends observed in the binding energies from MP2 calculations. Our study reveals that specific site functionalization can have a significant effect on the local adsorption characteristics and can be used as a design strategy to tailor materials with enhanced methane storage capacity.
Resumo:
The study extends the first order reliability method (FORM) and inverse FORM to update reliability models for existing, statically loaded structures based on measured responses. Solutions based on Bayes' theorem, Markov chain Monte Carlo simulations, and inverse reliability analysis are developed. The case of linear systems with Gaussian uncertainties and linear performance functions is shown to be exactly solvable. FORM and inverse reliability based methods are subsequently developed to deal with more general problems. The proposed procedures are implemented by combining Matlab based reliability modules with finite element models residing on the Abaqus software. Numerical illustrations on linear and nonlinear frames are presented. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we study duty cycling and power management in a network of energy harvesting sensor (EHS) nodes. We consider a one-hop network, where K EHS nodes send data to a destination over a wireless fading channel. The goal is to find the optimum duty cycling and power scheduling across the nodes that maximizes the average sum data rate, subject to energy neutrality at each node. We adopt a two-stage approach to simplify the problem. In the inner stage, we solve the problem of optimal duty cycling of the nodes, subject to the short-term power constraint set by the outer stage. The outer stage sets the short-term power constraints on the inner stage to maximize the long-term expected sum data rate, subject to long-term energy neutrality at each node. Albeit suboptimal, our solutions turn out to have a surprisingly simple form: the duty cycle allotted to each node by the inner stage is simply the fractional allotted power of that node relative to the total allotted power. The sum power allotted is a clipped version of the sum harvested power across all the nodes. The average sum throughput thus ultimately depends only on the sum harvested power and its statistics. We illustrate the performance improvement offered by the proposed solution compared to other naive schemes via Monte-Carlo simulations.
Resumo:
Motivated by experiments on Josephson junction arrays in a magnetic field and ultracold interacting atoms in an optical lattice in the presence of a ``synthetic'' orbital magnetic field, we study the ``fully frustrated'' Bose-Hubbard model and quantum XY model with half a flux quantum per lattice plaquette. Using Monte Carlo simulations and the density matrix renormalization group method, we show that these kinetically frustrated boson models admit three phases at integer filling: a weakly interacting chiral superfluid phase with staggered loop currents which spontaneously break time-reversal symmetry, a conventional Mott insulator at strong coupling, and a remarkable ``chiral Mott insulator'' (CMI) with staggered loop currents sandwiched between them at intermediate correlation. We discuss how the CMI state may be viewed as an exciton condensate or a vortex supersolid, study a Jastrow variational wave function which captures its correlations, present results for the boson momentum distribution across the phase diagram, and consider various experimental implications of our phase diagram. Finally, we consider generalizations to a staggered flux Bose-Hubbard model and a two-dimensional (2D) version of the CMI in weakly coupled ladders.
Resumo:
In this study, the free energy barriers for homogeneous crystal nucleation in a system that exhibits a eutectic point are computed using Monte Carlo simulations. The system studied is a binary hard sphere mixture with a diameter ratio of 0.85 between the smaller and larger hard spheres. The simulations of crystal nucleation are performed for the entire range of fluid compositions. The free energy barrier is found to be the highest near the eutectic point and is nearly five times that for the pure fluid, which slows down the nucleation rate by a factor of 10(-31). These free energy barriers are some of highest ever computed using simulations. For most of the conditions studied, the composition of the critical nucleus corresponds to either one of the two thermodynamically stable solid phases. However, near the eutectic point, the nucleation barrier is lowest for the formation of the metastable random hexagonal closed packed (rhcp) solid phase with composition lying in the two-phase region of the phase diagram. The fluid to solid phase transition is hypothesized to proceed via formation of a metastable rhcp phase followed by a phase separation into respective stable fcc solid phases.
Resumo:
The solid phase formed by a binary mixture of oppositely charged colloidal particles can be either substitutionally ordered or substitutionally disordered depending on the nature and strength of interactions among the particles. In this work, we use Monte Carlo molecular simulations along with the Gibbs-Duhem integration technique to map out the favorable inter-particle interactions for the formation of substitutionally ordered crystalline phases from a fluid phase. The inter-particle interactions are modeled using the hard core Yukawa potential but the method can be easily extended to other systems of interest. The study obtains a map of interactions depicting regions indicating the type of the crystalline aggregate that forms upon phase transition.
Resumo:
Wavelet coefficients based on spatial wavelets are used as damage indicators to identify the damage location as well as the size of the damage in a laminated composite beam with localized matrix cracks. A finite element model of the composite beam is used in conjunction with a matrix crack based damage model to simulate the damaged composite beam structure. The modes of vibration of the beam are analyzed using the wavelet transform in order to identify the location and the extent of the damage by sensing the local perturbations at the damage locations. The location of the damage is identified by a sudden change in spatial distribution of wavelet coefficients. Monte Carlo Simulations (MCS) are used to investigate the effect of ply level uncertainty in composite material properties such as ply longitudinal stiffness, transverse stiffness, shear modulus and Poisson's ratio on damage detection parameter, wavelet coefficient. In this study, numerical simulations are done for single and multiple damage cases. It is observed that spatial wavelets can be used as a reliable damage detection tool for composite beams with localized matrix cracks which can result from low velocity impact damage.
Resumo:
A binary mixture of oppositely charged colloidal particles can self-assemble into either a substitutionally ordered or substitutionally disordered crystalline phase depending on the nature and strength of interactions among the particles. An earlier study had mapped out favorable inter-particle interactions for the formation of substitutionally ordered crystalline phases from a fluid phase using Monte Carlo molecular simulations along with the Gibbs-Duhem integration technique. In this paper, those studies are extended to determine the effect of fluid phase composition on formation of substitutionally ordered solid phases.