935 resultados para Modification de la surface
Resumo:
This paper presents the application of surface-enhanced resonance Raman spectroscopy (SERRS) for the structural study of alizarin red S (ARS) and the nature of its interaction with silver nanoparticles. SERRS data for ARS over nanostructured silver electrodes suggest a surface-induced reaction of the adsorbed dye and the formation of an ion stabilized by the dye and alkali ions adsorbed at the metal surface. We found that precoating the SERS active substrate with 1-propanethiol inhibits the surface-induced modification of ARS. In addition to preventing structural modifications of ARS, the coating also concentrates the hydrophobic dye close enough to the SERS active interface enabling the observation of excellent Raman spectra of ARS in aqueous environment at ppm levels. The influence of resonance Raman effect and of the pH on the SERS spectra of ARS was also investigated. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The performance of La(2-x)Ce(x)Cu(1-y)Zn(y)O(4) perovskites as catalysts for the high temperature water-gas shift reaction (H T-W G S R) was investigated. The catalysts were characterized by EDS, XRD, BET surface area, TPR, and XANES. The results showed that all the perovskites exhibited the La(2)CuO(4) orthorhombic structure, so the Pechini method is suitable for the preparation of pure perovskite. However, the La(1.90)Ce(0.10)CuO(4) perovskite alone, when calcined at 350/700 degrees C, also showed a (La(0.935)Ce(0.065))(2)CuO(4) perovskite with tetragonal structure, which produced a surface area higher than the other perovskites. The perovskites that exhibited the best catalytic performance were those calcined at 350/700 degrees C and, among these, La(1.90)Ce(0.10)CuO(4) was outstanding, probably because of the high surface area associated with the presence of the (La(0.935)Ce(0.065))(2)CuO(4) perovskite with tetragonal structure and orthorhombic La(2)CuO(4) phase.
Resumo:
Catalysts` precursor of Co/Mg/Al promoted with Ce and La were tested in the steam reforming of methane (SRM). The addition of promoters was made by anion-exchange. The oxides characterization was made by X-ray Photoelectron Spectroscopy (XPS) analysis that confirmed Co(2+) species in free form on surface and interacted with Mg and Al in the form of solid solution. In the SRM with high fed molar ratio of H(2)O:CH(4) = 4:1, the catalysts showed a great affinity with water and immediately deactivated by oxidation of the active sites. In the stoichiometric ratio of H(2)O:CH(4) = 2: 1 the catalysts were active and presented low carbon deposition during the time reaction tested. Also a test with low fed molar ratio H(2)O:CH(4) = 0.5:1 was carried out to evaluate the stability of the catalysts by CH(4) decomposition and all the catalysts were stable during 6 h of reaction. Promoted catalysts presented lower carbon deposition. (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
Low-density polyethylene was filled with cellulose fibres from sugar cane bagasse obtained from organosolv/supercritical carbon dioxide pulping process. The fibres were also used after chemical modification with octadecanoyl and dodecanoyl chloride acids. The morphology, thermal properties, mechanical properties in both the linear and nonlinear range, and the water absorption behaviour of ensuing composites were tested. The evidence of occurrence of the chemical modification was checked by X-ray photoelectron spectrometry. The degree of polymerisation of the fibres and their intrinsic properties (zero tensile strength) were determined. It clearly appeared that the surface chemical modification of cellulose fibres resulted in improved interfacial adhesion with the matrix and higher dispersion level. However, composites did not show improved mechanical performances when compared to unmodified fibres. This surprising result was ascribed to the strong lowering of the degree of polymerisation of cellulose fibres (as confirmed by the drastic decrease of their zero tensile strength) after chemical treatment despite the mild conditions used. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
La(1-x)Ce(x)NiO(3) perovskites have been prepared, characterized by XRD. TPR and surface area and tested as catalysts for CO-PROx, with a feed of 2.5% CO, 5% O(2), 33% H(2) and N(2) to 100%. The samples exhibited an XRD pattern typical of the perovskite, with traces of NiO in the LaNiO(3) and La(0.95)Ce(0.05)NiO(3) samples, with some La(2)NiO(4) in the La(0.90)Ce(0.10)NiO(3) sample. All samples were active, but the perovskites with cerium showed good catalytic activity, demonstrating the promoter effect of cerium. The highest conversion of CO and H(2) was obtained with La(0.95)Ce(0.05)NiO(3), probably due to a synergy between Ni and Ce that enhanced O(2) mobility. (c) 2010 Elsevier B.V. All rights reserved.