948 resultados para Mobile agents (Computer software)
Resumo:
These are the full proceedings of the conference.
Resumo:
A preocupação com o estudo das formas e dimensões das arcadas dentárias sempre esteve presente na ciência ortodôntica. Para a Ortodontia Lingual, que surgiu no final da década de 70, o primeiro artigo publicado foi o Fujita, onde relatou sobre a forma do arco a ser utilizado nesta técnica, a forma de cogumelo. Apesar de estar sendo divulgada de uma maneira mais intensa nestes últimos anos como uma solução estética definitiva e eficaz, o enfoque dos estudos sobre esta técnica tem sido a fabricação de novos materiais, técnicas de montagem do aparelho lingual e soluções clínicas, com poucas menções sobre a morfologia das arcadas dentárias. O presente trabalho tem a finalidade de estudar as formas e dimensões linguais das arcadas dentárias de indivíduos leucodermas com oclusão normal. Foram utilizados 47 pares de modelos de gesso de oclusão normal digitalizados pela face olcusal, previamente desgastadas até o terço médio da coroa para proporcionar melhor visualização. Por meio do programa CorelDraw 12 foram determinados pontos de referências e criados alguns pontos virtuais necessários para a realização das medidas. Os resultados determinaram três formas das arcadas dentárias linguais: cogumelo, árvore de Natal e mista. A maior prevalência foi a forma árvore de Natal, mas quando analisadas separadamente as arcadas dentárias linguais, encontrados no superior, maior prevalência da forma de cogumelo e no inferior da forma árvore de Natal. Conseqüentemente, esta foi a combinação mais prevalente entre as arcadas dentárias linguais superiores e inferiores. Propusemos diagramas para conformação de arcos ortodônticos linguais com base nos valores obtidos da amostra, determinando-se o quartil 1, mediana e quartil 3, como definidores dos tamanhos pequeno, médio e grande.
Resumo:
Information technology has increased both the speed and medium of communication between nations. It has brought the world closer, but it has also created new challenges for translation — how we think about it, how we carry it out and how we teach it. Translation and Information Technology has brought together experts in computational linguistics, machine translation, translation education, and translation studies to discuss how these new technologies work, the effect of electronic tools, such as the internet, bilingual corpora, and computer software, on translator education and the practice of translation, as well as the conceptual gaps raised by the interface of human and machine.
Resumo:
Site selection is a key activity for quarry expansion to support cement production, and is governed by factors such as resource availability, logistics, costs, and socio-economic-environmental factors. Adequate consideration of all the factors facilitates both industrial productivity and sustainable economic growth. This study illustrates the site selection process that was undertaken for the expansion of limestone quarry operations to support cement production in Barbados. First, alternate sites with adequate resources to support a 25-year development horizon were identified. Second, technical and socio-economic-environmental factors were then identified. Third, a database was developed for each site with respect to each factor. Fourth, a hierarchical model in analytic hierarchy process (AHP) framework was then developed. Fifth, the relative ranking of the alternate sites was then derived through pair wise comparison in all the levels and through subsequent synthesizing of the results across the hierarchy through computer software (Expert Choice). The study reveals that an integrated framework using the AHP can help select a site for the quarry expansion project in Barbados.
Resumo:
Over the last 30 years, the field of problem structuring methods (PSMs) has been pioneered by a handful of 'gurus'—the most visible of whom have contributed other viewpoints to this special issue. As this generation slowly retires, it is opportune to survey the field and their legacy. We focus on the progress the community has made up to 2000, as work that started afterwards is ongoing and its impact on the field will probably only become apparent in 5–10 years time. We believe that up to 2000, research into PSMs was stagnating. We believe that this was partly due to a lack of new researchers penetrating what we call the 'grass-roots community'—the community which takes an active role in developing the theory and application of problem structuring. Evidence for this stagnation (or lack of development) is that, in 2000, many PSMs still relied heavily on the same basic methods proposed by the originators nearly 30 years earlier—perhaps only supporting those methods with computer software as a sign of development. Furthermore, no new methods had been integrated into the literature which suggests that revolutionary development, at least by academics, has stalled. We are pleased to suggest that from papers in this double special issue on PSMs this trend seems over because new authors report new PSMs and extend existing PSMs in new directions. Despite these recent developments of the methods, it is important to examine why this apparent stagnation took place. In the following sections, we identify and elaborate a number of reasons for it. We also consider the trends, challenges and opportunities that the PSM community will continue to face. Our aim is to evaluate the pre-2000 PSM community to encourage its revolutionary development post-2006 and offer directions for the long term sustainability of the field.
Resumo:
This work reports the developnent of a mathenatical model and distributed, multi variable computer-control for a pilot plant double-effect climbing-film evaporator. A distributed-parameter model of the plant has been developed and the time-domain model transformed into the Laplace domain. The model has been further transformed into an integral domain conforming to an algebraic ring of polynomials, to eliminate the transcendental terms which arise in the Laplace domain due to the distributed nature of the plant model. This has made possible the application of linear control theories to a set of linear-partial differential equations. The models obtained have well tracked the experimental results of the plant. A distributed-computer network has been interfaced with the plant to implement digital controllers in a hierarchical structure. A modern rnultivariable Wiener-Hopf controller has been applled to the plant model. The application has revealed a limitation condition that the plant matrix should be positive-definite along the infinite frequency axis. A new multi variable control theory has emerged fram this study, which avoids the above limitation. The controller has the structure of the modern Wiener-Hopf controller, but with a unique feature enabling a designer to specify the closed-loop poles in advance and to shape the sensitivity matrix as required. In this way, the method treats directly the interaction problems found in the chemical processes with good tracking and regulation performances. Though the ability of the analytical design methods to determine once and for all whether a given set of specifications can be met is one of its chief advantages over the conventional trial-and-error design procedures. However, one disadvantage that offsets to some degree the enormous advantages is the relatively complicated algebra that must be employed in working out all but the simplest problem. Mathematical algorithms and computer software have been developed to treat some of the mathematical operations defined over the integral domain, such as matrix fraction description, spectral factorization, the Bezout identity, and the general manipulation of polynomial matrices. Hence, the design problems of Wiener-Hopf type of controllers and other similar algebraic design methods can be easily solved.