984 resultados para Mine rescue work
Resumo:
In our previous paper, the expanding cavity model (ECM) and Lame solution were used to obtain an analytical expression for the scale ratio between hardness (H) to reduced modulus (E-r) and unloading work (W-u) to total work (W-t) of indentation for elastic-perfectly plastic materials. In this paper, the more general work-hardening (linear and power-law) materials are studied. Our previous conclusions that this ratio depends mainly on the conical angle of indenter, holds not only for elastic perfectly-plastic materials, but also for work-hardening materials. These results were also verified by numerical simulations.
Resumo:
IEEE
Resumo:
Organic thin-film transistors (OTFTs) using high dielectric constant material tantalum pentoxide (Ta2O5) and benzocyclobutenone (BCBO) derivatives as double-layer insulator were fabricated. Three metals with different work function, including Al (4.3 eV), Cr (4.5 eV) and Au (5.1 eV), were employed as gate electrodes to study the correlation between work function of gate metals and hysteresis characteristics of OTFTs. The devices with low work function metal Al or Cr as gate electrode exhibited high hysteresis (about 2.5 V threshold voltage shift). However, low hysteresis (about 0.7 V threshold voltage shift) OTFTs were attained based on high work function metal Au as gate electrode.
Resumo:
Some G-quadruplex DNA aptamers have been found to strongly bind hemin to form DNAzymes with peroxidase-like activity. To help determine the most suitable DNAzymes and to understand how they work, five previously reported G-quadruplex aptamers were compared for their binding affinity and then the potential catalytic mechanism of their corresponding hemin-G-quadruplex DNAzymes was explored. Among these aptamers, a G-quadruplex named AGRO100 was shown to possess the highest hemin-binding affinity and the best DNAzyme function. This means that AGRO100 is the most ideal candidate for DNAzyme-based analysis. Furthermore, we found the peroxidase-like activity of DNAzyme to be primarily dependent on the concentration of H2O2 and independent of that of the peroxidase substrate (that is, 2,2-azino-bis(3-ethytbenzothiazoline-6-sulfonic acid)diammonium salt). Accordingly, a reaction mechanism for DNAzyme-catalyzed peroxidation is proposed. This study provides new insights into the G-quadruplex-based DNAzymes and will help us to further extend their applications in the analytical field.
Resumo:
Recent research carried out at the Chinese Institute of Applied Chemistry has contributed significantly to the understanding of the radiation chemistry of polymers. High energy radiation has been successfully used to cross-link fluoropolymers and polyimides. Here chain flexibility has been shown to play an important role, and T-type structures were found to exist in the cross-linked fluoropolymers. A modified Charlesby-Pinner equation, based upon the importance of chain flexibility, was developed to account for the sol-radiation dose relationship in systems of this type. An XPS method has been developed to measure the cross-linking yields in aromatic polymers and fluoropolymers, based upon the dose dependence of the aromatic shake-up peaks and the F/C ratios, respectively. Methods for radiation cross-linking degrading polymers in polymer blends have also been developed, as have methods for improving the radiation resistance of polymers through radiation cross-linking.
Resumo:
The two major issues in mining industry are work safety and protection of ground environment when carrying on underground mining activities. Cut-and-fill mining method is increasingly applied in China owing to its advantages of controlling ground pressure and protecting the ground environment effectively. However, some cut-and-fill mines such as Jinchuan nickel mine which has big ore body, broken rock mass and high geostress have unique characteristics on the law of ground pressure and rock mass movement that distinguish from other mining methods. There are still many problems unknown and it is necessary for the further analysis. In this dissertation, vast field survey, geology trenching and relative data analysis are carried out. The distribution of ground fissures and the correlation of the fissures with the location of underground ore body is presented. Using of monitoring data by three-dimension fissure meter and GPS in Jinchuan Deposit Ⅱ, the rule of the surface deformation and the reason of ground fissures generation are analyzed. It is shown that the stress redistribution in surrounding rocks resulting from mining, the existence of the void space underground and the influence of on-going mining activities are three main reasons for the occurrence of ground fissures. Based on actual section planes of No.1 ore body, a large-scale 3D model is established. By this model, the complete process of excavation and filling is simulated and the law of rock mass movement and stability caused by Cut-and-fill Mining is studied. According to simulation results, it is concluded that the deformation of ground surface is still going on developing; the region of subsidence on the ground surface is similar with a circle; the area on the hanging wall side is larger than one on the lower wall side; the contour plots show the centre of subsidence lay on the hanging wall side and the position is near the ore body boundary of 1150m and 1250m where ore body is the thickest. Along strike-line of Jinchuan Deposit Ⅱ, the deformation at the middle of filling body is larger than that in the two sides. Because of the irregular ore body, stress concentrates at the boundary of ore body. With the process of excavation and filling, the high stress release and the stress focus disappear on the hanging wall side. The cut-and-fill mechanism is studied based on monitoring data and numerical simulation. The functions of filling body are discussed. In this dissertation, it is concluded that the stress of filling body is just 2MPa, but the stress of surrounding rock mass is 20MPa. We study the surface movement influenced by the elastic modulus of backfill. The minimal value of the elastic modulus of backfill which can guarantee the safety production of cut-and-fill mine is obtained. Finally, based on the real survey results of the horizontal ore layer and numerical simulation, it is indicated that the horizontal ore layer has destroyed. Key words: cut-and-filling mining, 3D numerical simulation, field monitoring, rock mass movement, cut-and-filling mechanism, the elastic modulus of backfill, the horizontal ore layer
Resumo:
A large number of catastrophic accidents were aroused by the instability and destruction of anti-dip rock masses in the worldwide engineering projects, such as hydropower station, mine, railways and so on. Problems in relation to deformation and failure about anti-dip rock slopes are significant for engineering geology research. This dissertation takes the Longpan slope in the Jinsha River as a case to study the deformation mechanism of large-scale anti-dip rock masses and the slope stability analysis method. The primary conclusions are as follows. The Dale Reach of Jinsha River, from Longpan to the debouchment of Chongjiang tributary, is located in the southeastern margin of the Qinghai-Tibet Plateau. Longpan slope is the right embankment of Dale dam, it is only 26 km to the Shigu and 18 km to Tiger Leaping Gorge. The areal geology tectonic structures here area are complicated and blurry. Base on the information of geophysical exploration (CSAMT and seismology) and engineering geological investigation, the perdue tectonic pattern of Dale Reach is put forward for the first time in this paper. Due to the reverse slip of Longpan fault and normal left-rotation of Baihanchang fault, the old faulted valley came into being. The thick riverbed sediments have layered characters of different components and corresponding causes, which attribute to the sedimentary environments according with the new tectonic movements such as periodic mountain uplifting in middle Pleistocene. Longpan slope consists of anti-dip alternate sandstone and slate stratums, and the deformable volume is 6.5×107m3 approximately. It was taken for an ancient landslide or toppling failure in the past so that Dale dam became a vexed question. Through the latest field surveying, displacement monitoring and rock masses deforming characters analyses, the geological mechanism is actually a deep-seated gravitational bending deformation. And then the discrete element method is used to simulate the deforming evolution process, the conclusion accords very well with the geo-mechanical patterns analyses. In addition strength reduction method based on DEM is introduced to evaluate the factor of safety of anti-dip rock slope, and in accordance with the expansion way of the shear yielding zones, the progressive shear failure mechanism of large-scale anti-dip rock masses is proposed for the first time. As an embankment or a close reservoir bank to the lower dam, the stability of Longpan slope especially whether or not resulting in sliding with high velocity and activating water waves is a key question for engineering design. In fact it is difficult to decide the unified slip surface of anti-dip rock slope for traditional methods. The author takes the shear yielding zones acquired form the discrete element strength reduction calculation as the potential sliding surface and then evaluates the change of excess pore pressure and factor of stability of the slope generated by rapid drawdown of ponded water. At the same time the dynamic response of the slope under seismic loading is simulated through DEM numerical modeling, the following results are obtained. Firstly the effective effect of seismic inertia force is resulting in accumulation of shear stresses. Secondly the discontinuous structures are crucial to wave transmission. Thirdly the ultimate dynamic response of slope system takes place at the initial period of seismic loading. Lastly but essentially the effect of earthquake load to bringing on deformation and failure of rock slope is the coupling effect of shear stresses and excess pore water pressure accumulation. In view of limitations in searching the critical slip surface of rock slope of the existing domestic and international software for limit equilibrium slope stability analyses, this article proposes a new method named GA-Sarma Algorithm for rock slope stability analyses. Just as its name implies, GA-Sarma Algorithm bases on Genetic Algorithm and Sarma method. GA-Sarma Algorithm assumes the morphology of slip surface to be a broken line with traceability to extend along the discontinuous surface structures, and the slice boundaries is consistent with rock mass discontinuities such as rock layers, faults, cracks, and so on. GA-Sarma Algorithm is revolutionary method that is suitable for global optimization of the critical slip surface for rock slopes. The topics and contents including in this dissertation are closely related to the difficulties in practice, the main conclusions have been authorized by the engineering design institute. The research work is very meaningful and useful for the engineering construction of Longpan hydropower station.
Resumo:
Rockmass movement due to mining steep metallic ore body is a considerable question in the surface movement and deformation issue caused by underground mining. Research on coal mining induced rockmass movement and its prediction problem have been performed for a long-term, and have achieved great progress at home and abroad. However, the rockmass movement caused by mining steep metal mine is distinctivly different from coal seam mining.. Existing surface movement laws and deformation prediction methods are not applicable to the rockmass movement caused by mining steep metal mine. So far the home and abroad research to this theory is presently at an early stage, and there isn’t mature theory or practical prediction method, which made a great impact on production. In this paper, the research object—Jinchuan nickel mine, which is typical steep metal mine, characterized by complex geological conditions, developed faults, cracked rockmass, high geostress, and prominent engineering stability problems. In addition, backfill mining method is used in the mine, the features of rockmass movement caused by this mining method are also different from other mining methods. In this paper, the laws of rock mass movement, deformation and destroy mechanism, and its prediction were analyzed based on the collection of data, detailed in-sit engineering geology survey, ground movement monitoring by GPS, theoretical analysis and numerical simulation. According to the GPS monitoring of ground surface movement, ground subsidence basin with apparent asymmetry is developing, the influence scope is larger in the upper faulted block than in the lower faulted block, and the center of ground movement is moving along the upper faulted block direction with increasing depth of mining. During the past half and seven years, the largest settlement has amounted to 1287.5mm, and corresponding horizontal displacement has amounted to 664.6mm. On the ground surface, two fissure belts show a fast-growing trend of closure. To sum up, mining steep metal mine with backfill method also exist the same serious problem of rockmass movement hazards. Fault, as a low intensity zone in rockmass, when it located within the region of mining influence, the change of potential energy mainly consumed in fault deformation associated with rockmass structure surface friction, which is the essence of displacement and stress barrier effects characterized by fault rupture zone. when steep fault located in the tensile deformation region incurred by underground excavation, no matter excavation in hangingwall or in footwall of the fault, there will be additional tensile stress on the vertical fault plane and decrease in the shear strength, and always showing characteristics of normal fault slip, which is the main reason of fault escarpment appeared on the ground surface. The No.14 shaft deformation and failure is triggered by fault activation, which showed with sidewall move, rupture, and break down features as the main form of a concentrated expression of fault effects. The size and orientation of principal stress in surrounding rock changed regularly with mining; therefore, roadway deformation and damage at different stages have different characteristics and distribution models. During the process of mining, low-intensity weak structures surface always showed the most obvious reaction, accompany with surface normal stress decrease and shear strength bring down, to some extent, occurred with relative slide and deformation. Meanwhile, the impact of mining is a relatively long process, making the structure surface effect of roadway deformation and damage more prominent than others under the influence of mining. Roadway surrounding rockmass deformation caused by the change of strain energy density field after excavation mainly belongs to elastic deformation, and the correspondented damage mainly belongs to brittle rupture, in this circumstance, surrounding rockmass will not appear large deformation. The large deformation of surrounding rockmass can only be the deformation associated with structure surface friction or the plastic deformation of itself, which mainly caused by the permanent self-weigh volume force,and long-term effect of mining led to the durability of this deformation Good pitting fill effect and supporting effect of backfill, as well as the friction of rockmass structure surface lead to obvious macro-rockmass movement with long-lag characteristics. In addition, the loss of original intensity and new structure surface arisen increased flexibility in rockmass and fill deformation in structure surface, which made the time required for rockmass potential energy translate into deformation work associated with plastic deformation and structure surface friction consumed much, and to a large extent, eliminated the time needed to do those plastic work during repeated mining, all of which are the fundamental reason of rockmass movement aftereffect more significant than before. Mining steep deposits in high tectonic stress area and in gravity stress area have different movement laws and deformation mechanism. The steep deposit, when the vertical size of the mining areas is smaller than the horizontal size of the orebody, no matter mining in gravity stress area or in high tectonic stress area, they have similar features of ground movement with mining horizontal orebody; contrarily, there will appear double settlement centers on the ground surface under the condition of mining in high tectonic stress area, while there will always be a single center under the other condition. Meanwhile the ground movement lever, scale of mining influence area and macro features of ground movement, deformation and fracture are also different from mining in gravity stress area, and the fundamental reason lies in the impact of orientation of the maximum principal stress on rock movement features in in-site rock stress field. When mining thick and steep deposit, the ground surface movement and deformation characteristic curves are significantly different from excavating the horizontal ore bed and thin steep deposit. According to the features of rockmass movement rate, the development process of mining-induced rockmass movement is divided into three stages: raising stage, steadily stage and gradually decay stage. Considering the actual exploitation situation, GPS monitoring results and macro-characteristics of surface movement, the current subsidence pattern of Jinchuan No.2 mine is in the early stage of development. Based on analysis of surface movement rate, surface subsidence rate increase rapidly when mining in double lever at the same time, and reach its peak until the exploitation model ended. When double lever mining translate into single, production decreased, surface subsidence rate suddenly start to reduce and maintain a relatively low value, and the largest subsidence center will slowly move along with the hangingwall ore body direction with increasing depth of mining, at the same time, the scope and extent of subsidence in footwall ore body will begin magnify, and a sub-settlement center will appear on ground surface, accompanied with the development and closure trend of ground fissure, the surrounding rockmass of shaft and roadway will be confronted to more frequent and severe deformation and failure, and which will have a negative impact on the overall stability of No.2 mine mining. On the premise of continuity of rockmass movement, gray system model can be used in ground rockmass movement prediction for good results. Under the condition of backfill mining step by step, the loose effect of compact status of the hard, broken rockmass led to lower energy release rate, although surrounding rockmass has high elastic energy, loose and damage occurred in the horizontal ore body, which made the mining process safety without any large geological hazards. During the period of mining the horizontal ore body to end, in view of its special “residual support role”, there will be no large scale rockmass movement hazards. Since ground surface movement mainly related to the intensity of mining speed and backfill effect, on the premise of constant mining speed, during the period of mining the horizontal ore body to end, the rate of ground surface rockmass movement and deformation won’t have sudden change.
Resumo:
The Fanshan complex consists of layered potassic ultramafic-syenite intrusions. The Fanshan apatite (-magnetite) deposit occurs in the Fanshan complex, and is an important style of phosphorus deposit in China. The Fanshan complex consists of three (First- to Third-) Phases of intrusion, and then the dikes. The First-Phase Intrusive contains ten typical layered rocks: clinopyroxenite, biotite clinopyroxenite, coarse-grained biotite clinopyroxenite, pegmatitic orthoclase-biotite clinopyroxenite, variegated orthoclase clinopyroxenite, interstitial orthoclase clinopyroxenite, biotite rock, biotite-apatite rock, biotite rock and magnetite-apatite rock. This layered intrusive consists of nine rhythmic units. Each rhythmic unit essentially comprises a pair of layers: clinopyroxenite at the bottom and biotite clinopyroxenite at the top. The apatite (-magnetite) deposit is situated near the top of rhythmic Unit no. 6 of the First-Phase Intrusive. The Second-Phase Intrusive contains three typical rocks: coarse-grained orthoclase clinopyroxenite, . coarse-grained salite syenite and schorlomite-salite syenite. The Third-Phase Intrusive includes pseudo-trachytic salite syenite, porphyritic augite syenite, fine-grained orthoclase clinopyroxenite and fine-grained salite syenite. The origin of the Fanshan complex is always paid attention to it in China. Because most layered igneous intrusion in the world not only have important deposit in it, but also carry many useful information for studying the formation of the intrusion and the evolvement of magma. Two sketch maps were drawn through orebodies along no. 25 cross-cut on 425 mL and no. 1 cross-cut on 491 mL in the Fanshan mine. Through this mapping, a small-scaled rhythmic layering (called sub-rhythmic layering in the present study) was newly found at the top of the rhythmic Unit no. 6. The concept of sub-rhythmic layering is defined in this article. The sub-rhythmic layering is recognized throughout this apatite-rich part, except for magnetite-apatite rock. Presence of the layered magnetite-apatite rock is one of the characteristics of the Fanshan apatite (-magnetite) deposit. Thus, from this layer downwards six units of sub-rhythmic layering are recognized in the present study. Each unit consists of biotite clinopyroxenite (or biotite rock and biotite-apatite rock) layer at the bottom and apatite rock layer at the top. To study this feature in detail is an important work for understanding the origin of the Fanshan complex and apatite (-magnetite) deposit. The origin of the Fanshan complex and the relation of the formation of the apatite(-magnetite)deposit will be interpreted by the study of sub-rhythmic layering on the basis of previous research works. The magma formed the Fanshan complex was rich in K2O, early crystallized pyroxene, and after this phase more biotite crystallized, but no amphibole appeared. This indicated that the activity of H2O in the magma was low. Major element compositions of biotite and clinopyroxene (on thin sections) in the sub-rhythmic layering were analyzed using electron microprobe analyzer. The analytical results indicate Mg/(Mg+Fe*+Mn) atomic ratios (Fe*, total iron) of these two minerals rhythmically changed in sub-rhythmic layering. The trends of Mg/(Mg+Fe*+Mn) atomic ratio (Fe*, total iron) of biotite and clinopyroxene indicate that the magma evolved markedly from relatively magnesian bottom layer to less magnesian top layer in each sub-rhythmic unit. A general trend through the sub-rhythmic layering sequence is both minerals becoming relatively magnesian upwards. The formation temperatures for sub-rhythmic layering yield values between 600 and 800 ℃, were calculated using the ratio of Mg/(Mg+Fe+Mn) in the salite and biotite assemblage. The equilibrium pressures in the rhythmic layers calculated using the contents of Al in the salite were plotted in the section map, shown a concave curve. This indicates that the magma formed the First-Phase Intrusive crystallized by two vis-a-vis ways, from its bottom and top to its centre, and the magnetite-apatite rock was crytallized in the latest stage. The values of equilibrium pressures in the sub-rhythmic layering were 3.6-6.8(xlO8) Pa with calculated using the contents of Al in the salite. The characteristics of geochemistry in various intrusive rocks and the rocks or apatite of sub-rhythmic layers indicated that the Fanshan complex formed by the comagmatic crystallization. The contents of immiscible elements and REEs of apatite rock at the top of one sub-rhythmic unit are more than biotite clinopyroxenite at the bottom. The contents of immiscible elements and REEs of apatite of biotite clinopyroxenite at the bottom of one sub-rhythmic unit are higher than apatite rock at the top. The curves of rocks (or apatite) in the upper sub-rhythmic units are between two curves of the below sub-rhythmic unit in the primitive mantle-normalized trace element abundance spider diagram and the primitive mantle-normalized REE pattern. The trend for the contents of immiscible elements and REEs inclines to the same contents from the bottom to the top in sub-rhythmic layering. These characteristics of geochemistry of rocks or apatites from sub-rhythmic layering indicate that the latter sub-rhythmic unit was produced by the residual magma after crystallization of the previous sub-rhythmic unit. The characteristics of petrology, petrochemistry, geochemistry in the Fanshan complex and sub-rhythmic layers and the trends of Mg/(Mg+Fe+Mn) atomic ratio of biotite and clinopyroxene in sub-rhytmic layering rejected the hypotheses, such as magma immiscibility, ravitational settling and multiple and pulse supplement of magma. The hypothesis of differentiation by crystallization lacks of evidences of field and excludes by this study. On the base of the trends of formation temperatures and pressures, the characteristics of petrology, petrochemistry, geochemistry for the Fanshan complex and the characteristics of geochemistry for the rocks (or apatites), the trends of Mg/(Mg+Fe+Mn) atomic ratio of biotite and clinopyroxene in sub-rhytmic layering, and the data of oxygen, hydrogen, strontium and neodymium isotopes, this study suggests that the magma formed the Fanshan complex was formed by low degree partial melting of mantle at a low activity of H2O, and went through the differentiation at the depth of mantle, then multiply intruded and crystallized. The rhythmic layers of the First-Phase Intrusive formed by the magma fractional crystallized in two vis-a-vis ways, from the bottom and top to the centre in-situ fractional crystallization. The apatite (-magnetite) deposit of the Fanshan complex occurs in sub-rhythmic layering sequence. The the origin of the sub-rhythmic layering is substantially the origin of the Fanshan apatite (-magnetite) deposit. The magma formed the rhythmic layers of First-Phase Intrusive was rich in H2O, F and P at the later stage of its in-situ fractional crystallization. The Fanshan apatite (-magnetite) deposit was formed by this residual magma in-situ fractional crystallization. The magnetite-apatite rock was crystallized by two vis-a-vis ways at the latest stage in-situ fractional crystallization in the rhythmic layers. The result was light apatite layer below heavy the magnetite-apatite layer, formed an "inversion" phenomenon.
Resumo:
In this paper, We analyzed the geological and geographical settings of dinosaurs extinction at the end of Cretaceous, especially the effect of the change of the elements contents on dinosaurs extinction. We studied basis on the two typical sections-Cretaceous-Paleocene boundary (Baishantou section (in Jiayin, Heilongjiang province of China) and Arkhara-Boguchan Coal Mine section (in Far East of Russian)) and Longgushan section (in Jiayin, Heilongjiang province of China) mainly. This work provided some evidences for forecasting the effects of global environmental change on bio-circle. The followings are the primary gains: According to the paleo-climate indexes (CaO/MgO,Sr/Ba) and the results of Factor Analysis, we found that there were similar climate in Baishantou section and Arkhara-Boguchan Coal Mine section near the K/E boundary, and both of them took on the trend of temperature declining and precipitation heightening after transitory high-temperature and drought. There are similar change and evlution rule of the elements contents near the boundary in the both sections (Baishantou section and Arkhara-Boguchan Coal Mine section). Both iron group elements and chalcophile elements appeared obvious abnormity. There are not visible correlation between the change of elements contents and climate indexes. This shows that the elements abnormity maybe came from the factors excluding climate or the factors were too many to conceal the influence of climate. --The result of cluster analysis showed that the boundary between BST3-8 and BST3-9 may be the K/E boundary of Baishantou section, and the top of twofold coal were the K/E boundary of Arkhara-Boguchan Coal Mine section which was consistent with accepted conclusion formerly. By contrast of elements contents in dinosaur bones and general organism, in surrounding rock and general sand stone, the regulation of the change of elements contents in dinosaur bones and surrounding rock, we confirmed that dinosaur extinction in Jiayin were relative with the high abnormities of Sr, Ba, Pb, Cr and the low abnormity of Zn, at least, it was them which speeded up dinosaurs extinction. After a series of analysis, we concluded that dinosaurs extinction of this areas tied up with the relative high background values of geo-chemical elements , paleo-climate and disaster incidents. First of all, high background values provided the necessary condition for the accumulation of the elements. Secondly, the drought climate adverse to the survival of dinosaurs, and led them to extinct gradually. finally, disaster incidents, the eruption of volcano or the collision of aerolites, made them exit this planet.