953 resultados para Microwave Filters


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reproducibility of measurements of alveolar bone loss on radiographs may be a problem on epidemiologic studies, as they are based on comparisons of the diagnosis of various examiners. The aim of the present research paper was to assess the inter- and intra-examiner reproducibility of measurements of the interproximal alveolar bone loss on non-manipulated digital radiographs and after the application of image filters. Five Oral Radiologists measured the distance between the cementoenamel junction (CEJ) to the alveolar crest or to the deepest point of the bony defect on 12 interproximal digital radiographs of molars and bicuspids of a dry human skull. The digital manipulation and the linear measurements were obtained with the Trophy Windows software (Throphy®). For each image, six different versions were created: 1) non-manipulated; 2) bright-contrast adjustment; 3) negative; 4) negative with brightness-contrast adjustment; 5) pseudo-colored; 6) pseudo-colored with brightness-contrast adjustment. In order to prevent interpretation bias because of the repetition of measurements, the examiners measured the radiographs in a random sequence. The two-way ANOVA test at 5% level of significance to compare the means of readings of the same operator with each filter indicated p<0.05 for the majority of operators, while the comparison between the mean values of operators using the same filter indicated p>0.05 for all filters. Based on the results, we concluded that linear measurements of interproximal alveolar bone loss on digital radiographs are highly reproducible among examiners. Nevertheless, the application of image filters significantly influenced the degree of intra-examiner reproducibility. Some filters even reduced the reproducibility of intra-examiner readings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In indicating the microwave irradiation for disinfecting dentures it is necessary to see how this procedure influences Candida albicans integrity and viability. The aim of this study was to evaluate the ability of microwaves to inactivate C. albicans and damage cell membrane integrity. Two 200-ml C. albicans (ATCC 10231) suspensions were obtained. A sterile denture was placed in a beaker containing the Experimental (ES) or the Control suspension (CS). ES was microwaved at 650 W for 6 min. Suspensions were optically counted using methylene blue dye uptake as indicative of membrane-damaged cells; spread on Agar Sabouraud dextrose (ASD) for viability assay; or spectrophotometrically measured at 550 nm. Cell-free solutions were submitted to content analyses of protein (Bradford and Pyrogallol red methods); Ca++ (Cresolftaleine complexone method); DNA (spectrophotometer measurements at 260 nm) and K + (selective electrode technique). Data were analysed by Student's t- or Wilcoxon z-tests (α = 0.05). All ES cells demonstrated cell membrane damage. Viable cells were non-existent in the ES ASD plates. No significant difference in optical density between ES and CS was observed (P = 0.272). ES cells released significantly high protein (P < 0.001, Bradford; P = 0.005, Pyrogallol red), K+ (P < 0.001), Ca++ (P = 0.012) and DNA (P = 0.046) contents. Microwaves inactivated C. albicans and damaged cell membrane integrity. © 2007 The Authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone decalcification is a time-consuming process. It takes weeks and preservation of the tissue structure depends on the quality and velocity of the demineralization process. In the present study, a decalcification methodology was adapted using microwaving to accelerate the decalcification of rat bone for electron microscopic analysis. The ultrastructure of the bone decalcified by microwave energy was observed. Wistar rats were perfused with paraformaldehyde and maxillary segments were removed and fixed in glutaraldehyde. Half of specimens were decalcified by conventional treatment with immersion in Warshawsky solution at 4oC during 45 days, and the other half of specimens were placed into the beaker with 20 mL of the Warshawsky solution in ice bath and thereafter submitted to irradiation in a domestic microwave oven (700 maximum power) during 20 s/350 W/±37°C. In the first day, the specimens were irradiated 9 times and stored at 40°C overnight. In the second day, the specimens were irradiated 20 times changing the solution and the ice after each bath. After decalcification, some specimens were postfixed in osmium tetroxide and others in osmium tetroxide and potassium pyroantimonate. The specimens were observed under transmission electron microscopy. The results showed an increase in the decalcification rate in the specimens activated by microwaving and a reduction of total experiment time from 45 days in the conventional method to 48 hours in the microwave-aided method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to show the microwaves action in fixation of rat fetuses, dermal and cartilaginous tissues, using histological and immunohistochemistry methods for analysis. It was possible to conclude in this study using the rat as experimental model that the two methods for antibody retrieval, presented an excellent ways for the use of Ki67 antibody in the immunohistochemical analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: This study evaluated the influence of polymerization cycle and thickness of maxillary complete denture bases on the porosity of acrylic resin. Materials and Methods: Two heat-activated denture base resins - one conventional (Clássico) and one designed for microwave polymerization (Onda-Cryl) - were used. Four groups were established, according to polymerization cycles: A (Onda-Cryl, short microwave cycle), B (Onda-Cryl, long microwave cycle), C (Onda-Cryl, manufacturing microwave cycle), and T (Clássico, water bath). Porosity was evaluated for different thicknesses (2.0, 3.5, and 5.0 mm; thicknesses I, II, and III, respectively) by measurement of the specimen volume before and after its immersion in water. The percent porosity data were submitted to Kruskal-Wallis for comparison among the groups. Results: The Kruskal-Wallis test detected that the combinations of the different cycles and thicknesses showed significant differences, and the mean ranks of percent porosity showed differences only in the thinnest (2.0 mm) microwave-polymerized specimens (A = 53.55, B = 40.80, and C = 90.70). Thickness did not affect the results for cycle T (I = 96.15, II = 70.20, and III = 82.70), because porosity values were similar in the three thicknesses. Conclusions: Microwave polymerization cycles and the specimen thickness of acrylic resin influenced porosity. Porosity differences were not observed in the polymerized resin bases in the water bath cycle for any thickness. © 2007 by The American College of Prosthodontists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: This study evaluated the effectiveness of different exposure times of microwave irradiation on the disinfection of a hard chairside reline resin. Materials and Methods: Sterile specimens were individually inoculated with one of the tested microorganisms (Pseudomonas aeruginosa, Staphylococcus aureus, Candida albicans, and Bacillus subtilis) and incubated for 24 hours at 37°C. For each microorganism, 10 specimens were not microwaved (control), and 50 specimens were microwaved. Control specimens were individually immersed in sterile saline, and replicate aliquots of serial dilutions were plated on selective media appropriate for each organism. Irradiated specimens were immersed in water and microwaved at 650 W for 1, 2, 3, 4, or 5 minutes before serial dilutions and platings. After 48 hours of incubation, colonies on plates were counted. Irradiated specimens were also incubated for 7 days. Some specimens were prepared for scanning electron microscopic (SEM) analysis. Results: Specimens irradiated for 3, 4, and 5 minutes showed sterilization. After 2 minutes of irradiation, specimens inoculated with C. albicans were sterilized, whereas those inoculated with bacteria were disinfected. One minute of irradiation resulted in growth of all microorganisms. SEM examination indicated alteration in cell morphology of sterilized specimens. The effectiveness of microwave irradiation was improved as the exposure time increased. Conclusion: This study suggests that 3 minutes of microwave irradiation can be used for acrylic resin sterilization, thus preventing cross-contamination. © 2008 by The American College of Prosthodontists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work an image pre-processing module has been developed to extract quantitative information from plantation images with various degrees of infestation. Four filters comprise this module: the first one acts on smoothness of the image, the second one removes image background enhancing plants leaves, the third filter removes isolated dots not removed by the previous filter, and the fourth one is used to highlight leaves' edges. At first the filters were tested with MATLAB, for a quick visual feedback of the filters' behavior. Then the filters were implemented in the C programming language. At last, the module as been coded in VHDL for the implementation on a Stratix II family FPGA. Tests were run and the results are shown in this paper. © 2008 Springer-Verlag Berlin Heidelberg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the effect of microwave energy on the hardness, impact strength and flexural strength of the Clássico, Onda-Cryl and QC-20 acrylic resins. Aluminum die were embedded in metallic or plastic flasks with type III dental stone, in accordance with the traditional packing technique. A mixing powder/liquid ratio was used according to the manufacturer's instructions. After polymerization in water batch at 74°C for 9 h, boiling water for 20 min or microwave energy at 900 W for 10 min, the specimens were deflasked after flask cooling at room temperature, and submitted to finishing. Specimens non-disinfected and disinfected by microwave irradiation were submitted to hardness, impact and flexural strength tests. Each specimen was immersed in distilled water and disinfected in a microwave oven calibrated to 650 W for 3 min. Knoop hardness test was performed with 25 g load for 10 s, impact test was carried out using the Charpy system with 40 kpcm, and 3-point bending test with a crosshead speed of 0.5 mm/min until fracture. Data were submitted to statistical analysis by ANOVA and Tukey's test (α=0.05). Disinfection by microwave energy decreased the hardness of Clássico and Onda-Cryl acrylic resins, but no effect was observed on the impact and flexural strength of all tested resins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We review the basic hypotheses which motivate the statistical framework used to analyze the cosmic microwave background, and how that framework can be enlarged as we relax those hypotheses. In particular, we try to separate as much as possible the questions of gaussianity, homogeneity, and isotropy from each other. We focus both on isotropic estimators of nongaussianity as well as statistically anisotropic estimators of gaussianity, giving particular emphasis on their signatures and the enhanced cosmic variances that become increasingly important as our putative Universe becomes less symmetric. After reviewing the formalism behind some simple model-independent tests, we discuss how these tests can be applied to CMBdata when searching for large-scale anomalies. Copyright © 2010 L. Raul Abramo and Thiago S. Pereira.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bismuth titanate ceramics (Bi 4Ti 3O 12) with 10 wt% in excess of bismuth (BIT10) were prepared by the polymeric precursor method and sinterized in microwave (MW) and conventional furnaces (CF). The effect of microwave energy on structural and electrical behavior of BIT10 ceramics was investigated by means of X-ray diffraction (XRD), Scanning electron microscopy (SEM) and electrical measurements. The results of the BIT10 ceramics processed in the microwave furnace (MW) showed a high structural organization compared to conventional treatment (CF). Size of grains and dieletrical properties are influenced by annealing conditions while coercitive field is not dependent on it. The maximum dielectric permittivity (12000) was obtained for the sample sintered in the microwave furnace. Piezoelectric force microscopy images reveals that in-plane response may not change its sign upon polarization switching, while the out-of-plane response does with the influence of microwave energy. Copyright © 2010 American Scientific Publishers All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this paper is to present a computer model that enables the operation analysis of a tuned filter as an attenuator device of harmonic generated 12 and 18-pulses converters with Y-generalized differential connection. Are presented in this study physical considerations, mathematical modeling and digital simulations in the frequency domain using the software Orcad-Pspice®, which allows a spectral analysis of the harmonic components and supports the search for an optimal filtering process. It is unequivocally demonstrated the feasibility of the application as an alternative to optimize the use of multipulse converters, and enable the operation of this device within the established regulatory standards. The validation of the proposed model is based on results obtained in the time domain using Matlab/Simulink®. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main aim of this study was to develop dense and conducting SnO 2 ceramics without precipitated phases on the grain boundaries, which was verified using field emission scanning microscopy (FE-SEM) coupled with an energy-dispersive X-ray spectroscopy (FE-SEM/EDS). Two sample groups were investigated, where the first sample group was doped with zinc while the second one was doped with cobalt. The ceramics were prepared using the oxides mixture method and the sintering was carried out in a conventional muffle oven as well as in microwave oven. The results obtained were found to be similar regarding the relative density for the two sintering methods while time and temperature gains were observed for the microwave sintering method. The relative densities obtained were nearly 95%, for the two sintering methods. Concerning the electrical characterization measurements-electric field x current density as well as the environment temperature, the ceramics obtained through the conventional sintering method presented non-ohmic behavior. For the microwave sintered ceramics, we observed an ohmic behavior with electrical resistivity of 1.3 Ωcm for the samples doped with ZnO/Nb 2O 5 and 2.5 Ωcm for that of the samples doped with CoO/Nb 2O 5. The FE-SEM/EDS results for the microwave sintered ceramics indicated a structure with a reduced number of pores and other phases segregated at the grain boundaries, which leads to a better conductive ceramic than the conventional oven sintered samples. The dilatometry analysis determined the muffle sintering temperature and the difference between the densification of cobalt and zinc oxides. The addition of niobium oxide resulted in the decrease in resistivity, which thus led us to conclude that it is possible to obtain dense ceramics with low electrical resistivity based on SnO 2 using commercial oxides by the oxides mixture technique and the microwave oven sintering method. Copyright © 2011 American Scientific Publishers All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, (Ca 1-xCu x)TiO 3 crystals with (x = 0, 0.01 and 0.02), labeled as CTO, CCTO1 and CCTO2, were synthesized by the microwave-hydrothermal method at 140°C for 32 min. XRD patterns (Fig. 1), Rietveld refinement and FT-Raman spectroscopy indicated that these crystals present orthorhombic structure Pbnm. Micro-Raman and XANES spectra suggested that the substitution of Ca by Cu in A-site promoted a displacement of the [TiO6]-[TiO6] clusters adjacent from its symmetric center, which leads distortions on the [CaO 12] clusters neighboring and consequently cause the strains into the CaTiO3 lattice. FE-SEM images showed that these crystals have an irregular shape as cube like probably indicating an Ostwald-ripening and self-assemble as dominant mechanisms to crystals growth. The powders presented an intense PL blue-emission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work CdMoO 4 nanoparticles were obtained under hydrothermal conditions using microwave radiation (2.45 GHz) (MH) at 100°C for different times. These powders were analyzed by X-ray diffraction (XRD), Field-emisson gum scanning electron microscopy (FEG-SEM), Ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL) measurements. XRD pattern confirmed that the pure CdMoO 4 phases were obtained. FEG-SEM powders present large-scale and homogeneous particles with microspheres-like morphology. UV-vis results were employed to determine the optical band gap these materials. Also, it showed existence of photoluminescence (PL) emission in the green wavelength range of 540-546 nm. Photocatalytic activity of CdMoO 4 nanocrystals was examined by monitoring the degradation of rhodamine B dye.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, zinc oxide powders were synthesized by microwave-assisted hydrothermal method in basic medium. These powders were analyzed by X-ray diffraction (XRD), Field-emisson gum scanning electron microscopy (FEG-SEM), Ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL) measurements. XRD pattern confirmed that the pure ZnO phases were obtained after MH processing performed at 130°C/ 1h. FEG-SEM micrographs reveals that these nanostructures are made up of ZnO plates. UV-vis results were employed to determine the optical band gap these materials. Also, it showed existence of photoluminescence (PL) in the different zinc powders. An orange PL emission when excited by 350 nm wavelength at room temperature was observad in the different powders.