997 resultados para Mg alloy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A wear mechanism map of uncoated high-speed steel (HSS) tools was constructed under the conditions of dry-drilling die-cast magnesium alloys. Three wear mechanisms appear in the map based on the microanalysis of drilled HSS tools by SEM, including adhesive wear, abrasive wear and diffusion wear. In the map, there exists a minor wear region which is called "safety zone". This wear mechanism map will be a good reference for choosing suitable drilling parameters when drilling die-cast magnesium alloys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical corrosion behavior of Mg-6Al-0.4Mn and Mg-6Al-4RE-0.4Mn (RE = Mischmetal) alloys is investigated in 3.5% NaCl solution. The results of corrosion process, polarization behavior, and electrochemical impedance spectroscopy of the alloys reveal that Mg-6Al-4RE-0.4Mn exhibits enhanced corrosion resistance. The addition of RE stabilizes the solid solution and modifies the passive film through a finer microstructure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel cemented carbides (W0.8Al0.2)C-0.7-Co with different cobalt contents were prepared by mechanical alloying and hot-pressing technique. Hot-pressing technique as a common technique was performed to fabricate the bulk bodies of the hard alloys. The novel cemented carbides have superior mechanical properties compared with WC-Co. The density, operate cost of the novel material were much lower than WC-Co system. The novel materials were easy to process nanoscale sintering and get the rounded particles in the bulk materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructures and mechanical properties of cast Mg-Zn-Al-RE alloys with 4 wt.% RE and variable Zn and At contents were investigated. The results show that the alloys mainly consist of alpha-Mg, Al2REZn2, Al4RE and tau-Mg-32(Al,Zn)(49) phases. and a little amount of the beta-Mg17Al12 phase will also be formed with certain Zn and At contents. When increasing the Zn or At content, the distribution of the Al2REZn2 and Al4RE phases will be changed from cluster to dispersed, and the content of tau-Mg-32(Al,Zn)(49) phase increased gradually. The distribution of the Al2REZn2 and Al4RE phases, and the content of beta- or tau-phase are critical to the mechanical properties of Mg-Zn-Al-RE alloys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

在简要介绍高强轻质Mg-Li合金发展历史的基础上,对Mg-Li合金中含稀土(RE)的Mg-Li-RE系合金的研究情况进行总结。重点介绍Mg-Li-RE三元合金以及含RE的Mg-Li其他系合金的研究进展,叙述了RE对Mg-Li合金结构、性能的影响,指出目前存在的问题,提出下一步工作重点和今后的发展方向。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure and electrochemical characteristics of melted composite Ti0.10Zr0.15V0.35Cr0.10Ni0.30 + x% LaNi4Al0.4Mn0.3Co0.3 (x = 0, 1, 5) hydrogen storage alloys have been investigated systematically. XRD shows that though the main phase of the matrix alloy remains unchanged after LaNi4Al0.4Mn0.3Co0.3 alloy is added, a new specimen is formed. The amount of the new specimen increases with increasing x. SEM-EDS analysis indicates that the V-based solid solution phase is mainly composed of V, Cr and Ni; C14 Laves phase is mainly composed of Ni, Zr and V; the new specimen containing La is mainly composed of Zr, V and Ni. The electrochemical measurements suggest that the activation performance, the low temperature discharge ability, the high rate discharge ability and the cyclic stability of composite alloy electrodes increase greatly with the growth of x.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ti-Zr-V-Mn-Ni-based multi-component alloys demonstrate high discharge capacity in KOH electrolyte. However, the drastic decrease in their discharge capacities makes them unsuitable for use as negative electrode material in the Ni/MH battery. In present work, Ni is partially replaced by Cr in the Ti-Zr-V-Mn-Ni-based alloys to improve their cycle life. The effects of Cr substitution on microstructures and the electrochemical characteristics of the alloys are investigated. It is found that Cr substitution is very effective to improve the cyclic durability of the alloys although the discharge capacity decreases with changing x from 0.05 to 0.20. Some kinetic performances have been also investigated using electrochemical impedance spectroscopy (EIS) and potentiostatic discharge technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large-scale arrays consist of dendritic single-crystalline Ag/Pd alloy nanostructures are synthesized for the first time. A simple galvanic replacement reaction is introduced to grow these arrays directly on Ag substrates. The morphology of the products strongly depended on the reaction temperature and the concentration of H2PdCl4 solution. The mechanism of the formation of alloy and the dendritic morphology has been discussed. These alloy arrays exhibit high surface-enhanced Raman scattering (SERS) activity and may have potential applications in investigation of "in situ" Pd catalytic reactions using SERS. Moreover, electrocatalytic measurements suggest that the obtained dendritic Ag/Pd alloy nanostructures exhibit electrocatytic activity toward the oxidation of formic acid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mg-4Al-0.4Mn-xPr (x = 1, 2, 4 and 6 wt.%) magnesium alloys were prepared successfully by the high-pressure die-casting technique. The microstructures, mechanical properties, corrosion behavior as well as strengthening mechanism were investigated. The die-cast alloys were mainly composed of small equiaxed dendrites and the matrix. The fine rigid skin region was related to the high cooling rate and the aggregation of alloying elements, such as Pr. With the Pr content increasing, the alpha-Mg grain sizes were reduced gradually and the amounts of the Al2Pr phase and All, Pr-3 phase which mainly concentrated along the grain boundaries were increased and the relative volume ratio of above two phases was changed. Considering the performance-price ratio, the Pr content added around 4 wt.% was suitable to obtain the optimal mechanical properties which can keep well until 200 degrees C as well as good corrosion resistance. The outstanding mechanical properties were mainly attributed to the rigid casting surface layer, grain refinement, grain boundary strengthening obtained by an amount of precipitates as well as solid solution strengthening.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ti45Zr35Ni17Cu3 amorphous and icosahedral quasicrystal line (I-phase) powders were synthesized by mechanical alloying (MA) and subsequent annealing, the phase structure and hydrogen absorption properties of two powders were investigated. XRD analysis indicated that the MAed powder was an amorphous phase and annealed powder was an I-phase. Two alloy exhibited excellent hydrogen adsorption property and started to absorb hydrogen without induction time. PCT measurement showed that the plateau pressure of the amorphous powders was obviously higher than that of the I-phase powders. After the first hydrogen cycling, the partial amorphous phase changed to (Zr, Ti)H-2 phases, and the I-phase was steady. Similar hydride phases Ti2ZrH4 and (Zr, Ti)H-2 were also formed after the second hydrogen cycling for the amorphous and I-phase alloy powders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A bulk alloy which consists of the single icosahedral quasicrystalline phase (I-phase) in Ti45Zr35Ni17CU3 alloy has been fabricated by mechanical alloying and subsequent pulse discharge sintering technique. Crystallographic structure analyses show that the bulk alloy is an I-phase. The transport properties of the bulk alloy are examined, and the results show that the room-temperature thermal conductivity is 5.347 W K-(1) m(-1), and the electrical conductivity decreases with increasing the temperature from 300 to 450K. The Seebeck coefficient is negative at the temperature range from 300 to 360K, and changes to positive from 370 to 450K. Hall effect measurements indicate the bulk I-phase alloy has a high carrier concentration. The specific heat capacity increases when the temperature increases from 280 to 324 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Icosahedral quasicrystalline Ti45Zr35Ni17Cu3 alloy was ball-milled with 30 mass% La0.9Zr0.1Ni4.5Al0.5 alloy (LaNi5 phase), the effect of the milling time on crystallographic and electrochemical characteristics of the alloy powder was investigated. The amount of amorphous phase increased with increasing milling time from 60 to 360 min, and the LaNi5 phase cannot be observed when milling time was 240 min or more. The maximum discharge capacity and high-rate dischargeability of milled alloy electrodes were obviously higher than those of the alloy electrode before milling. The cycling capacity retention rate after 40 cycles increased from 52.8% (t = 60 min) to 62.9% (t = 360 min).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lightest density of Mg has stimulated renewed interest in Mg based alloys for applications in the automotive, aerospace and communications industries. However, Mg in the pure form has relatively low strength, limited ductility and is susceptible to corrosion. Great efforts have been made to improve the mechanical properties of Mg alloys. Alloying Mg with other elements is one of the most important methods. An important class of Mg alloys is the Mg-Zn-RE system (RE = rare earth elements). In recent few decades, a series of new Mg-Zn-RE system alloys have been obtained, and detailed the structure and mechanical properties of the alloys. In this paper, the structure and mechanical properties of the Mg-Zn-RE alloys have been summarized. It showed that these alloys have high strength and they are prospected to be widely used in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new-type Mg2Si composite was prepared with Mg-9Al-1Zn (AZ91) alloy and vermiculite as raw materials by melt infiltration method. The results show that the microstructure of composite consists of a large amount Of Mg2Si precipitates and a little amount of MgO embedded in alpha-Mg matrix. The Vickers hardness of the composite is obviously higher than that of matrix of AZ91 alloy. Moreover, the composite exhibits excellent compressive property. The ultimate compressive strength of the material is 290 MPa, the yield strength is 175 MPa, and the elongation is about 5%, which are higher than those of AZ91 alloy.