967 resultados para Metal ions -- Absorption and adsorption


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water shortage is a major problem facing the power industry in many nations around the world. The largest consumer of water in most power plants is the wet cooling tower. To assist water and energy saving for thermal power stations using conventional evaporative wet cooling towers, a hybrid cooling system is proposed in this paper. The hybrid cooling system may consists of all or some of an air pre-cooler, heat pump, heat exchangers, and adsorption chillers together with the existing cooling tower. The hybrid cooling system described in the paper, consisting of a metal hydride heat pump operating in conjunction with the existing wet cooling tower, is capable of achieving water saving by reducing the temperature of warm water entering the cooling tower. Cooler inlet water temperatures effectively reduce the cooling load on existing towers. This will ultimately reduce the amount of water lost to the air by evaporation whilst still achieving the same cooling output. At the same time, the low grade waste energy upgraded by the metal hydride heat pump, in the process of cooling the water, can be used to replace the bleed of steam for the lower stage feed heaters which will increase overall cycle efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recently synthesized ionic liquid (IL) 2-butylthiolonium bis(trifluoromethanesulfonyl)amide, [mimSBu][NTf2], has been used for the extraction of copper(II) from aqueous solution. The pH of the aqueous phase decreases upon addition of [mimSBu]+, which is attributed to partial release of the hydrogen attached to the N(3) nitrogen atom of the imidazolium ring. The presence of sparingly soluble water in [mimSBu][NTf2] also is required in solvent extraction studies to promote the incorporation of Cu(II) into the [mimSBu][NTf2] ionic liquid phase. The labile copper(II) system formed by interacting with both the water and the IL cation component has been characterized by cyclic voltammetry as well as UV−vis, Raman, and 1H, 13C, and 15N NMR spectroscopies. The extraction process does not require the addition of a complexing agent or pH control of the aqueous phase. [mimSBu][NTf2] can be recovered from the labile copper−water−IL interacting system by washing with a strong acid. High selectivity of copper(II) extraction is achieved relative to that of other divalent cobalt(II), iron(II), and nickel(II) transition-metal cations. The course of microextraction of Cu2+ from aqueous media into the [mimSBu][NTf2] IL phase was monitored in situ by cyclic voltammetry using a well-defined process in which specific interaction with copper is believed to switch from the ionic liquid cation component, [mimSBu], to the [NTf2] anion during the course of electrochemical reduction from Cu(II) to Cu(I). The microextraction−voltammetry technique provides a fast and convenient method to determine whether an IL is able to extract electroactive metal ions from an aqueous solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein fibers such as silk and wool have been used as textile fibers for centuries. It is only in recent years that these fibers have been converted into fine powder forms for non-textile applications. This presentation will cover our recent research in protein fiber powders. Ultra-fine powders from different protein fibers have been produced using a combination of media and non media milling techniques. New application examples of these fine powders are discussed. These applications include hybrid fibers combining the advantages of natural and synthetic polymer fibers, tissue engineering composite scaffolds with enhanced biomechanical properties, and metal ion absorption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A low molecular mass alkaliphilic extra-cellular lipase of Bacillus cereus MTCC 8372 was purified 35-fold by hydrophobic interaction (Octyl-Sepharose) chromatography. The purified enzyme was found to be electrophoretically pure by denaturing gel electrophoresis and possessed a molecular mass of approximately 8 kDa. It is a homopentamer of 40 kDa as revealed by native-PAGE. The lipase was optimally active at 55 °C and retained approximately half of its original activity after 40 min incubation at 55 °C. The enzyme was maximally active at pH 8.5. Mg 2+ , Cu 2+ , Ca 2+ , Hg 2+ , Al 3+ and Fe 3+ at 1 mM enhanced hydrolytic activity of the lipase. Interestingly, Hg 2+ ions synergized and Zn 2+ and Co 2+ ions antagonized the lipase activity. Among surfactants, Tween 80 promoted the lipase activity. Phenyl methyl sulfonyl fluoride (PMSF, 15 mM) decreased 98% of original activity of lipase. The lipase was highly specific towards p -nitrophenyl palmitate and showed a V max and K m of 0.70 mmol.mg −1 .min −1 and 32 mM for hydrolysis of p NPP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Five halogen-free orthoborate salts comprised of three different cations (cholinium, pyrrolidinium and imidazolium) and two orthoborate anions, bis(mandelato)borate and bis(salicylato)borate, were synthesised and characterised by DSC, X-ray diffraction and NMR. DSC measurements revealed that glass transition points of these orthoborate salts are in the temperature range from −18 to −2 °C. In addition, it was found that [EMPy][BScB] and [EMIm][BScB] salts have solid–solid phase transitions below their melting points, i.e. they exhibit typical features of plastic crystals. Salts of the bis(salicylato)borate anion [BScB]− have higher melting points compared with corresponding salts of the bis(mandelato)borate anion [BMB]−. Single crystal X-ray diffraction crystallography (for [Chol][BScB] crystals) and solid-state multinuclear (13C, 11B and 15N) NMR spectroscopy were employed for the structural characterisation of [Chol][BScB], [EMPy][BScB] and [EMIm][BScB], which are solids at room temperature: a strong interaction between [BScB]− anions and [Chol]+ cations was identified as (i) hydrogen bonding between OH of [Chol]+ and carbonyl groups of [BScB]− and (ii) as the inductive C–Hπ interaction. In the other salt, [EMIm][BScB], anions exhibit ππ stacking in combination with C–Hπ interactions with [EMIm]+ cations. These interactions were not identified in [EMPy][BScB] probably because of the lack of aromaticity in cations of the latter system. Our data on the formation of a lanthanum complex with bis(salicylato)borate in the liquid mixture of La3+(aq) with [Chol][BScB] suggest that this class of novel ILs can be potentially used in the extraction processes of metal ions of rare earth elements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we report a facile method for preparing graphene oxide (GO) hybrid materials consisting of copper ions (Cu2+) complexed with GO, where Cu2+ acted as bridges connecting GO sheets. The method of film formation is based on cross-linking GO using Cu2+ followed by filtration onto nanoporous supports. This binding can be rationalized due to the chemical interaction between the functional groups on GO and the metal ion. We observed that there was a decrease in charge transfer resistance through electrochemical study. It suggests that the presence of metal ions in GO films could introduce new energy levels along the electron transport pathway and open up possible conduction channels. We also found that the hybrid graphene film assembled with Cu2+ dramatically decreases resistance through flash light reduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reaction of the group 14 tetrachlorides MCl4 (M = Si, Ge, Sn) with oleum (65 % SO3) at elevated temperatures led to the unique anionic complexes [M(S2O7)3]2– that show the central M atoms in coordination of three chelating S2O72– groups. The mean distances M–O within the complexes increase from 175 pm (M = Si) via 186 pm (M = Ge) up to 200 pm (M = Sn). The charge balance for the [M(S2O7)3]2– anions is achieved by alkaline metal ions A+ (A = Li, Na, K, Rb, Cs) which were implemented in the syntheses in form of their sulfates. The size of the A+ ions, i.e. their coordination requirement causes the crystallographic differences in the crystal structures, while the structure of the complex [M(S2O7)3]2– anions remains essentially unaffected. Furthermore, we were able to characterize the unique germanate Hg2[Ge(S2O7)3]Cl2 which forms when HgCl2 is added as a source for the counter cation. The Hg2+ and the Cl– ions form infinite cationic chains according to 1∞[HgCl2/2]+ which take care for the charge compensation. For selected examples of the compounds the thermal behavior has been monitored by means of thermal analyses and X-ray powder diffraction. For A being an alkaline metal the decomposition product is a mixture of the sulfates A2SO4 and the dioxides MO2, whereas Hg2[Ge(S2O7)3]Cl2 shows a more complicated decomposition. The tris-(disulfato)-silicate Na2[Si(S2O7)3] has additionally been examined by solid state 29Si and 23Na NMR spectroscopic measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the structure of the electrical double layer, determined from molecular dynamics simulations, for a range of saline solutions (NaCl, KCl, MgCl2 and CaCl2) at both 0.16 and 0.60molkg(-1) on different facets of the gold and silver aqueous interfaces. We consider the Au/Ag(111), native Au/Ag(100) and reconstructed Au(100)(5×1) facets. For a given combination of metallic surface and facet, some variations in density profile are apparent across the different cations in solution, with the corresponding chloride counterion profiles remaining broadly invariant. All density profiles at the higher concentration are predicted to be very similar to their low-concentration counterparts. We find that each electrolyte responds differently to the different metallic surface and facets, particularly those of the divalent metal ions. Our findings reveal marked differences in density profiles between facets for a given metallic interface for both Mg(2+) and Ca(2+), with Na(+) and K(+) showing much less distinction. Mg(2+) was the only ion for which we find evidence of materials-dependent differences in interfacial solution structuring between the Ag and Au.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glutaredoxins have been characterised as enzymes regulating the redox status of protein thiols via cofactors GSSG/GSH. However, such a function has not been demonstrated with physiologically relevant protein substrates in in vitro experiments. Their active sites frequently feature a Cys-xx-Cys motif that is predicted not to bind metal ions. Such motifs are also present in copper-transporting proteins such as Atox1, a human cytosolic copper metallo-chaperone. In this work, we present the first demonstration that: (i) human glutaredoxin 1 (hGrx1) efficiently catalyses interchange of the dithiol and disulfide forms of the Cys(12)-xx-Cys(15) fragment in Atox1 but does not act upon the isolated single residue Cys(41); (ii) the direction of catalysis is regulated by the GSSG/2GSH ratio and the availability of Cu(I); (iii) the active site Cys(23)-xx-Cys(26) in hGrx1 can bind Cu(I) tightly with femtomolar affinity (K(D) = 10(-15.5) M) and possesses a reduction potential of E(o)' = -118 mV at pH 7.0. In contrast, the Cys(12)-xx-Cys(15) motif in Atox1 has a higher affinity for Cu(I) (K(D) = 10(-17.4) M) and a more negative potential (E(o)' = -188 mV). These differences may be attributed primarily to the very low pKa of Cys23 in hGrx1 and allow rationalisation of conclusion (ii) above: hGrx1 may catalyse the oxidation of Atox1(dithiol) by GSSG, but not the complementary reduction of the oxidised Atox1(disulfide) by GSH unless Cu(aq)(+) is present at a concentration that allows binding of Cu(I) to reduced Atox1 but not to hGrx1. In fact, in the latter case, the catalytic preferences are reversed. Both Cys residues in the active site of hGrx1 are essential for the high affinity Cu(I) binding but the single Cys(23) residue only is required for the redox catalytic function. The molecular properties of both Atox1 and hGrx1 are consistent with a correlation between copper homeostasis and redox sulfur chemistry, as suggested by recent cell experiments. These proteins appear to have evolved the features necessary to fill multiple roles in redox regulation, Cu(I) buffering and Cu(I) transport.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The addition of diluents to ionic liquids (ILs) has recently been shown to enhance the transport properties of ILs. In the context of electrolyte design, this enhancement allows the realisation of IL-based electrolytes for metal-air batteries and other storage devices. It is likely that diluent addition not only impacts the viscosity of the IL, but also the ion-ion interactions and structure. Here, we investigate the nano-structured 1-methyl-3-octylimidazolium chloride (OMImCl) with varying water concentrations in the presence of two metal salts, zinc chloride and magnesium chloride. We find that the choice of metal salt has a significant impact on the structure and transport properties of the system; this is explained by the water structuring and destructing properties of the metal salt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract A simple, signal-off and reusable electrochemical biosensor was developed for sensitive and selective detection of mercury(II) based on thymine-mercury(II)-thymine (T-Hg2+-T) complex and the remarkable difference in the affinity of graphene with double strand DNA (ds-DNA) and single strand DNA (ss-DNA). Our system was composed of ferrocene-tagged probe DNA and graphene. Due to the noncovalent assembly, the ferrocene-tagged probe ss-DNA was immobilized on the surface of graphene nanosheets directly and employed to amplify the electrochemical signal. In the presence of Hg2+, the ferrocene-labeled T-rich DNA probe hybridized with target probe to form ds-DNA via the Hg2+-mediated coordination of T-Hg2+-T base pairs. As a result, the duplex DNA complex kept away from the graphene surface due to the weak affinity of graphene and ds-DNA, and the redox current decreased substantially. Meanwhile, the graphene decorated GCE surface was released for the reusability. Under the optimal conditions, the proposed sensor showed a linear concentration range from 25 pM to 10 μM with a detection limit of 5 pM for Hg2+ detection. The strategy afforded exquisite selectivity for Hg2+ against other metal ions in real environmental samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bioinorganic natural product chemistry is a relatively unexplored but rapidly developing field with enormous potential for applications in biology, biotechnology (especially in regards to nanomaterial development, synthesis and environmental cleanup) and biomedicine. In this review the occurrence of metals and metalloids in natural products and their synthetic derivatives are reviewed. A broad overview of the area is provided followed by a discussion on the more common metals and metalloids found in natural sources, and an overview of the requirements for future research. Special attention is given to metal hyperaccumulating plants and their use in chemical synthesis and bioremediation, as well as the potential uses of metals and metalloids as therapeutic agents. The potential future applications and development in the field are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metal-hyperaccumulating plants have the ability to take up extraordinary quantities of certain metal ions without succumbing to toxic effects. Most hyperaccumulators select for particular metals but the mechanisms of selection are not understood at the molecular level. While there are many metal-binding biomolecules, this review focuses only on ligands that have been reported to play a role in sequestering, transporting or storing the accumulated metal. These include citrate, histidine and the phytosiderophores. The metal detoxification role of metallothioneins and phytochelatins in plants is also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental evidence suggests that nicotianamine (NA) is involved in the complexation of metal ions in some metal-hyperaccumulating plants. Closely-related nickel (Ni)- and zinc (Zn)-hyperaccumulating species were studied to determine whether a correlation exists between the Ni and Zn concentrations and NA in foliar tissues. A liquid chromatography–mass spectrometry (LC-MS) procedure was developed to quantify the NA and amino acid contents using the derivatizing agent 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. A strong correlation emerged between Ni and NA, but not between Zn and NA. Concentrations of NA and l-histidine (His) also increased in response to higher Ni concentrations in the hydroponic solution supplied to a serpentine population of Thlaspi caerulescens. An inversely proportional correlation was found between the iron (Fe) and Ni concentrations in the leaves. Correlations were also found between Zn and asparagine. The results obtained in this study suggest that NA is involved in hyperaccumulation of Ni but not Zn. The inverse proportionality between the Ni and Fe concentrations in the leaf may suggest that Ni and Fe compete for complexation to NA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Targeted liquid chromatography–mass spectrometry (LC–MS) technology using size exclusion chromatography and metabolite profiling based on gas chromatography–mass spectrometry (GC–MS) were used to study the nickel-rich latex of the hyperaccumulating tree Sebertia acuminata. More than 120 compounds were detected, 57 of these were subsequently identified. A methylated aldaric acid (2,4,5-trihydroxy-3-methoxy-1,6-hexan-dioic acid) was identified for the first time in biological extracts and its structure was confirmed by 1D and 2D nuclear magnetic resonance (NMR) spectroscopy. After citric acid, it appears to be one of the most abundant small organic molecules present in the latex studied. Nickel(II) complexes of stoichiometry NiII:acid = 1:2 were detected for these two acids as well as for malic, itaconic, erythronic, galacturonic, tartaric, aconitic and saccharic acids. These results provide further evidence that organic acids may play an important role in the transport and possibly in the storage of metal ions in hyperaccumulating plants.