981 resultados para Metal characterization
Resumo:
Agência Financiadora: FCT - PTDC/QUI/72656/2006 ; SFRH/BPD/27454/2006; SFRH/BPD/44082/2008; SFRH/BPD/41138/2007
Resumo:
In this work we isolated from soil and characterized several bacterial strains capable of either resisting high concentrations of heavy metals (Cd2+ or Hg2+ or Pb2+) or degrading the common soil and groundwater pollutants MTBE (methyl-tertbutyl ether) or TCE (trichloroethylene). We then used soil microcosms exposed to MTBE (50 mg/l) or TCE (50 mg/l) in the presence of one heavy metal (Cd 10 ppm or Hg 5 ppm or Pb 50 or 100 ppm) and two bacterial isolates at a time, a degrader plus a metalresistant strain. Some of these two-membered consortia showed degradation efficiencies well higher (49–182% higher) than those expected under the conditions employed, demonstrating the occurrence of a synergetic relationship between the strains used. Our results show the efficacy of the dual augmentation strategy for MTBE and TCE bioremediation in the presence of heavy metals.
Resumo:
5-Monocyclopentadienyliron(II)/ruthenium(II) complexes of the general formula [M(5-C5H5)(PP)(L1)][PF6] {M = Fe, PP = dppe; M = Ru, PP = dppe or 2PPh3; L1 = 5-[3-(thiophen-2-yl)benzo[c]thiophenyl]thiophene-2-carbonitrile} have been synthesized and studied to evaluate their molecular quadratic hyperpolarizabilities. The compounds were fully characterized by NMR, FTIR and UV/Vis spectroscopy and their electrochemical behaviour studied by cyclic voltammetry. Quadratic hyperpolarizabilities () were determined by hyper-Rayleigh scattering measurements at a fundamental wavelength of 1500 nm. Density functional theory calculations were employed to rationalize the second-order non-linear optical properties of these complexes.
Resumo:
Chrysonilia sitophila is a common mould in cork industry and has been identified as a cause of IgE sensitization and occupational asthma. This fungal species have a fast growth rate that may inhibit others species’ growth causing underestimated data from characterization of occupational fungal exposure. Aiming to ascertain occupational exposure to fungi in cork industry, were analyzed papers from 2000 about the best air sampling method, to obtain quantification and identification of all airborne culturable fungi, besides the ones that have fast-growing rates. Impaction method don’t allows the collection of a representative air volume, because even with some media that restricts the growth of the colonies, in environments with higher fungal load, such as cork industry, the counting of the colonies is very difficult. Otherwise, impinger method permits the collection of a representative air volume, since we can make dilution of the collected volume. Besides culture methods that allows fungal identification trough macro- and micro-morphology, growth features, thermotolerance and ecological data, we can apply molecular biology with the impinger method, to detect the presence of non-viable particles and potential mycotoxin producers’ strains, and also to detect mycotoxins presence with ELISA or HPLC. Selection of the best air sampling method in each setting is crucial to achieve characterization of occupational exposure to fungi. Information about the prevalent fungal species in each setting and also the eventual fungal load it’s needed for a criterious selection.
Resumo:
Liver steatosis is mainly a textural abnormality of the hepatic parenchyma due to fat accumulation on the hepatic vesicles. Today, the assessment is subjectively performed by visual inspection. Here a classifier based on features extracted from ultrasound (US) images is described for the automatic diagnostic of this phatology. The proposed algorithm estimates the original ultrasound radio-frequency (RF) envelope signal from which the noiseless anatomic information and the textural information encoded in the speckle noise is extracted. The features characterizing the textural information are the coefficients of the first order autoregressive model that describes the speckle field. A binary Bayesian classifier was implemented and the Bayes factor was calculated. The classification has revealed an overall accuracy of 100%. The Bayes factor could be helpful in the graphical display of the quantitative results for diagnosis purposes.
Resumo:
In this work, tin selenide thin films (SnSex) were grown on soda lime glass substrates by selenization of dc magnetron sputtered Sn metallic precursors. Selenization was performed at maximum temperatures in the range 300 °C to 570 °C. The thickness and the composition of the films were analysed using step profilometry and energy dispersive spectroscopy, respectively. The films were structurally and optically investigated by X-ray diffraction, Raman spectroscopy and optical transmittance and reflectance measurements. X-Ray diffraction patterns suggest that for temperatures between 300 °C and 470 °C, the films are composed of the hexagonal-SnSe2 phase. By increasing the temperature, the films selenized at maximum temperatures of 530 °C and 570 °C show orthorhombic-SnSe as the dominant phase with a preferential crystal orientation along the (400) crystallographic plane. Raman scattering analysis allowed the assignment of peaks at 119 cm−1 and 185 cm−1 to the hexagonal-SnSe2 phase and those at 108 cm−1, 130 cm−1 and 150 cm−1 to the orthorhombic-SnSe phase. All samples presented traces of condensed amorphous Se with a characteristic Raman peak located at 255 cm−1. From optical measurements, the estimated band gap energies for hexagonal-SnSe2 were close to 0.9 eV and 1.7 eV for indirect forbidden and direct transitions, respectively. The samples with the dominant orthorhombic-SnSe phase presented estimated band gap energies of 0.95 eV and 1.15 eV for indirect allowed and direct allowed transitions, respectively.
Resumo:
In the present work we report the results of the growth, morphological and structural characterization of Cu2ZnSnS4 (CZTS) thin films prepared by sulfurization of DC magnetron sputtered Cu/Zn/Sn precursor layers. The adjustment of the thicknesses and the properties of the precursors were used to control the final composition of the films. Its properties were studied by SEM/EDS, XRD and Raman scattering. The influence of the sulfurization temperature on the morphology, composition and structure of the films has been studied. With the presented method we have been able to prepare CZTS thin films with the kesterite structure.
Resumo:
Thin films of Cu2SnS3 and Cu3SnS4 were grown by sulfurization of dc magnetron sputtered Sn–Cu metallic precursors in a S2 atmosphere. Different maximum sulfurization temperatures were tested which allowed the study of the Cu2SnS3 phase changes. For a temperature of 350 ◦C the films were composed of tetragonal (I -42m) Cu2SnS3. The films sulfurized at a maximum temperature of 400 ◦C presented a cubic (F-43m) Cu2SnS3 phase. On increasing the temperature up to 520 ◦C, the Sn content of the layer decreased and orthorhombic (Pmn21) Cu3SnS4 was formed. The phase identification and structural analysis were performed using x-ray diffraction (XRD) and electron backscattered diffraction (EBSD) analysis. Raman scattering analysis was also performed and a comparison with XRD and EBSD data allowed the assignment of peaks at 336 and 351 cm−1 for tetragonal Cu2SnS3, 303 and 355 cm−1 for cubic Cu2SnS3, and 318, 348 and 295 cm−1 for the Cu3SnS4 phase. Compositional analysis was done using energy dispersive spectroscopy and induced coupled plasma analysis. Scanning electron microscopy was used to study the morphology of the layers. Transmittance and reflectance measurements permitted the estimation of absorbance and band gap. These ternary compounds present a high absorbance value close to 104 cm−1. The estimated band gap energy was 1.35 eV for tetragonal (I -42m) Cu2SnS3, 0.96 eV for cubic (F-43m) Cu2SnS3 and 1.60 eV for orthorhombic (Pmn21) Cu3SnS4. A hot point probe was used for the determination of semiconductor conductivity type. The results show that all the samples are p-type semiconductors. A four-point probe was used to obtain the resistivity of these samples. The resistivities for tetragonal Cu2SnS3, cubic Cu2SnS3 and orthorhombic (Pmn21) Cu3SnS4 are 4.59 × 10−2 cm, 1.26 × 10−2 cm, 7.40 × 10−4 cm, respectively.
Resumo:
Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe4 (CZTSe) with their band gap energies around 1.45 eV and 1.0 eV, respectively, can be used as the absorber layer in thin film solar cells. By using a mixture of both compounds, Cu2ZnSn(S,Se)4 (CZTSSe), a band gap tuning may be possible. The latter material has already shown promising results such as solar cell efficiencies up to 10.1%. In this work, CZTSSe thin films were grown in order to study its structure and to establish the best growth precursors. SEM micrographs reveal an open columnar structure for most samples and EDS composition profiling of the cross sections show different selenium gradients. X-ray diffractograms show different shifts of the kesterite/stannite (1 1 2) peak, which indicate the presence of CZTSSe. From Raman scattering analysis, it was concluded that all samples had traces of CZTS and CZTSSe. The composition of the CZTSSe layer was estimated using X-ray diffraction and Raman scattering and both results were compared. It was concluded that Se diffused more easily in precursors with ternary Cu–Sn–S phases and metallic Zn than in precursors with ZnS and/or CZTS already formed. It was also showed that a combination of X-ray diffraction and Raman scattering can be used to estimate the ratio of S per Se in CZTSSe samples.
Resumo:
Bone is constantly being molded and shaped by the action of osteoclasts and osteoblasts. A proper equilibrium between both cell types metabolic activities is required to ensure an adequate skeletal tissue structure, and it involves resorption of old bone and formation of new bone tissue. It is reported that treatment with antiepileptic drugs (AEDs) can elicit alterations in skeletal structure, in particular in bone mineral density. Nevertheless, the knowledge regarding the effects of AEDs on bone cells are still scarce. In this context, the aim of this study was to investigate the effects of five different AEDs on human osteoclastic, osteoblastic and co-cultured cells. Osteoclastic cell cultures were established from precursor cells isolated from human peripheral blood and were characterized for tartrate-resistant acid phosphatase (TRAP) activity, number of TRAP+ multinucleated cells, presence of cells with actin rings and expressing vitronectin and calcitonin receptors and apoptosis rate. Also, the involvement of several signaling pathways on the cellular response was addressed. Osteoblastic cell cultures were obtained from femur heads of patients (25-45 years old) undergoing orthopaedic surgery procedures and were then studied for cellular proliferation/viability, ALP activity, histochemical staining of ALP and apoptosis rate. Also the expression of osteoblast-related genes and the involvement of some osteoblastogenesis-related signalling pathways on cellular response were addressed. For co-cultured cells, osteoblastic cells were firstly seeded and cultured. After that, PBMC were added to the osteoblastic cells and co-cultures were evaluated using the same osteoclast and osteoblast parameters mentioned above for the corresponding isolated cell. Cell-cultures were maintained in the absence (control) or in the presence of different AEDs (carbamazepine, gabapentin, lamotrigine, topiramate and valproic acid). All the tested drugs were able to affect osteoclastic and osteoblastic cells development, although with different profiles on their osteoclastogenic and osteoblastogenic modulation properties. Globally, the tendency was to inhibit the process. Furthermore, the signaling pathways involved in the process also seemed to be differently affected by the AEDs, suggesting that the different drugs may affect osteoclastogenesis and/or osteoblastogenesis through different mechanisms. In conclusion, the present study showed that the different AEDs had the ability to directly and indirectly modulate bone cells differentiation, shedding new light towards a better understanding of how these drugs can affect bone tissue.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações
Resumo:
In man brain cancer is an aggressive, malignant form of tumour, it is highly infiltrative in nature, is associated with cellular heterogeneity and affects cerebral hemispheres of the brain. Current drug therapies are inadequate and an unmet clinical need exists to develop new improved therapeutics. The ability to silence genes associated with disease progression by using short interfering RNA (siRNA) presents the potential to develop safe and effective therapies. In this work, in order to protect the siRNA from degradation, promote cell specific uptake and enhance gene silencing efficiency, a PEGylated cyclodextrin (CD)-based nanoparticle, tagged with a CNS-targeting peptide derived from the rabies virus glycoprotein (RVG) was formulated and characterized. The modified cyclodextrin derivatives were synthesized and co-formulated to form nanoparticles containing siRNA which were analysed for size, surface charge, stability, cellular uptake and gene-knockdown in brain cancer cells. The results identified an optimised co-formulation prototype at a molar ratio of 1:1.5:0.5 (cationic cyclodextrin:PEGylated cyclodextrin:RVG-tagged PEGylated cyclodextrin) with a size of 281±39.72nm, a surface charge of 26.73±3mV, with efficient cellular uptake and a 27% gene-knockdown ability. This CD-based formulation represents a potential nanocomplex for systemic delivery of siRNA targeting brain cancer.
Resumo:
Eur. J. Biochem. 270, 3904–3915 (2003)
Resumo:
Inorganica Chimica Acta 356 (2003) 215-221