993 resultados para Metal bonding.
Resumo:
Digestive ripening, a postsynthetic treatment of colloidal nanoparticles, is a versatile method to produce monodisperse nanoparticles and to prepare various bimetallic nanostructures. The mechanism of this process is largely unknown. Herein, we present a systematic study conducted using Au nanoparticles prepared by a solvated metal atom dispersion method to probe the mechanistic aspects of digestive ripening. In our study, experimental conditions such as concentration of capping agent, reaction time, and temperature, were found to influence the course of the digestive ripening process. Here it is shown that, during digestive ripening under reflux, nanoparticles within an optimum size window are conserved, and surface etching facilitated mass transfer resulted in monodisperse nanoparticles. Overall, digestive ripening can be considered as a kinetically controlled thermodynamic process.
Resumo:
Interaction between the lattice and the orbital degrees of freedom not only makes rare-earth nickelates unusually ``bad metal,'' but also introduces a temperature-driven insulator-metal phase transition. Here we investigate this insulator-metal phase transition in thin films of SmNiO3 using the slow time-dependent fluctuations (noise) in resistivity. The normalized magnitude of noise is found to be extremely large, being nearly eight orders of magnitude higher than thin films of common disordered metallic systems, and indicates electrical conduction via classical percolation in a spatially inhomogeneous medium. The higher-order statistics of the fluctuations indicate a strong non-Gaussian component of noise close to the transition, attributing the inhomogeneity to the coexistence of the metallic and insulating phases. Our experiment offers insight into the impact of lattice-orbital coupling on the microscopic mechanism of electron transport in the rare-earth nickelates.
Resumo:
A simple and scalable method of decorating 3D-carbon nanotube (CNT) forest with metal particles has been developed. The results observed in aluminum (AI) decorated CNTs and copper (Cu) decorated CNTs on silicon (Si) and Inconel are compared with undecorated samples. A significant improvement in the field emission characteristics of the cold cathode was observed with ultralow turn on voltage (E-to similar to 0.1 V/mu m) due to decoration of CNTs with metal nanoparticles. Contact resistance between the CNTs and the substrate has also been reduced to a large extent, allowing us to get stable emission for longer duration without any current degradation, thereby providing a possibility of their use in vacuum microelectronic devices.
Resumo:
A Cu2+-selective metallo(hydro) gelation of a p-pyridyl ended oligophenylenevinylene system is reported over its respective meta- and ortho-regioisomers. The metallogel formed via the self-assembly of the nanoscale-metal-organic particles is injectable and also shows multi-stimuli responsiveness, including thixotropy.
Resumo:
We demonstrate here that supramolecular interactions enhance the sensitivity towards detection of electron-deficient nitro-aromatic compounds (NACs) over discrete analogues. NACs are the most commonly used explosive ingredients and are common constituents of many unexploded landmines used during World WarII. In this study, we have synthesised a series of pyrene-based polycarboxylic acids along with their corresponding discrete esters. Due to the electron richness and the fluorescent behaviour of the pyrene moiety, all the compounds act as sensors for electron-deficient NACs through a fluorescence quenching mechanism. A Stern-Volmer quenching constant determination revealed that the carboxylic acids are more sensitive than the corresponding esters towards NACs in solution. The high sensitivity of the acids was attributed to supramolecular polymer formation through hydrogen bonding in the case of the acids, and the enhancement mechanism is based on an exciton energy migration upon excitation along the hydrogen-bond backbone. The presence of intermolecular hydrogen bonding in the acids in solution was established by solvent-dependent fluorescence studies and dynamic light scattering (DLS) experiments. In addition, the importance of intermolecular hydrogen bonds in solid-state sensing was further explored by scanning tunnelling microscopy (STM) experiments at the liquid-solid interface, in which structures of self-assembled monolayer of the acids and the corresponding esters were compared. The sensitivity tests revealed that these supramolecular sensors can even detect picric acid and trinitrotoluene in solution at levels as low as parts per trillion (ppt), which is much below the recommended permissible level of these constituents in drinking water.
Resumo:
Detection of trace amounts of explosive materials is significantly important for security concerns and pollution control. Four multicomponent metal organic frameworks (MOFs-12, 13, 23, and 123) have been synthesized by employing ligands embedded with fluorescent tags. The multicomponent assembly of the ligands was utilized to acquire a diverse electronic behavior of the MOFs and the fluorescent tags were strategically chosen to enhance the electron density in the MOFs. The phase purity of the MOFs was established by PXRD, NMR spectroscopy, and finally by singlecrystal XRD. Single-crystal structures of the MOFs-12 and 13 showed the formation of three-dimensional porous networks with the aromatic tags projecting inwardly into the pores. These electron-rich MOFs were utilized for detection of ex- plosive nitroaromatic compounds (NACs) through fluorescence quenching with high selectivity and sensitivity. The rate of fluorescence quenching for all the MOFs follows the order of electron deficiency of the NACs. We also showed the detection of picric acid (PA) by luminescent MOFs is not always reliable and can be misleading. This attracts our attention to explore these MOFs for sensing picryl chloride (PC), which is as explosive as picric acid and used widely to prepare more stable explosives like 2,4,6-trinitroaniline from PA. Moreover, the recyclability and sensitivity studies indicated that these MOFs can be reused several times with parts per billion (ppb) levels of sensitivity towards PC and 2,4,6-trinitrotoluene (TNT).
Resumo:
A cold atomic realization of a quantum correlated state of many fermions on a lattice, eg. superfluid, has eluded experimental realization due to the entropy problem. Here we propose a route to realize such a state using holographic lattice and confining potentials. The potentials are designed to produces aband insulating state (low heat capacity) at the trap center, and a metallic state (high heat capacity) at the periphery. The metal ``cools'' the central band insulator by extracting out the excess entropy. The central band insulator can be turned into a superfluid by tuning an attractive interaction between the fermions. Crucially, the holographic lattice allows the emergent superfluid to have a high transition temperature - even twice that of the effective trap temperature. The scheme provides a promising route to a laboratory realization of a fermionic lattice superfluid, even while being adaptable to simulate other many body states.
Resumo:
One hundred complexes have been investigated exhibiting D-X center dot center dot center dot A interactions, where X = H, Cl or Li and DX is the `X bond' donor and A is the acceptor. The optimized structures of all these complexes have been used to propose a generalized `Legon-Millen rule' for the angular geometry in all these interactions. A detailed Atoms in Molecules (AIM) theoretical analysis confirms an important conclusion, known in the literature: there is a strong correlation between the electron density at the X center dot center dot center dot A bond critical point (BCP) and the interaction energy for all these interactions. In addition, we show that extrapolation of the fitted line leads to the ionic bond for Li-bonding (electrostatic) while for hydrogen and chlorine bonding, it leads to the covalent bond. Further, we observe a strong correlation between the change in electron density at the D-X BCP and that at the X center dot center dot center dot A BCP, suggesting conservation of the bond order. The correlation found between penetration and electron density at BCP can be very useful for crystal structure analysis, which relies on arbitrary van der Waals radii for estimating penetration. Various criteria proposed for shared-and closed-shell interactions based on electron density topology have been tested for H/Cl/Li bonded complexes. Finally, using the natural bond orbital (NBO) analysis it is shown that the D-X bond weakens upon X bond formation, whether it is ionic (DLi) or covalent (DH/DCl) and the respective indices such as ionicity or covalent bond order decrease. Clearly, one can think of conservation of bond order that includes ionic and covalent contributions to both D-X and X center dot center dot center dot A bonds, for not only X = H/Cl/Li investigated here but also any atom involved in intermolecular bonding.
Resumo:
We report a one-pot hydrothermal synthesis of nitrogen doped reduced graphene oxide (N-rGO) and Ag nanoparticle decorated N-rGO hybrid nanostructures from graphene oxide (GO), metal ions and hexamethylenetetramine (HMT). HMT not only reduces GO and metal ions simultaneously but also acts as the source for the nitrogen (N) dopant. We show that the N-rGO can be used as a metal-free surface enhanced Raman spectroscopy (SERS) substrate, while the Ag nano-particles decorated N-rGO can be used as an effective SERS substrate as well as a template for decorating various other nanostructures on N-rGO.
Resumo:
Atomically thin layered black phosphorous (BP) has recently appeared as an alternative to the transitional metal dichalcogenides for future channel material in a metal-oxide-semiconductor transistor due to its lower carrier effective mass. Investigation of the electronic property of source/drain contact involving metal and two-dimensional material is essential as it impacts the transistor performance. In this paper, we perform a systematic and rigorous study to evaluate the Ohmic nature of the side-contact formed by the monolayer BP (mBP) and metals (gold, titanium, and palladium), which are commonly used in experiments. Employing the Density Functional Theory, we analyse the potential barrier, charge transfer and atomic orbital overlap at the metal-mBP interface in an optimized structure to understand how efficiently carriers could be injected from metal contact to the mBP channel. Our analysis shows that gold forms a Schottky contact with a higher tunnel barrier at the interface in comparison to the titanium and palladium. mBP contact with palladium is found to be purely Ohmic, where as titanium contact demonstrates an intermediate behaviour. (C) 2014 AIP Publishing LLC.
Resumo:
Two isomorphous submicron sized metal-organic network compounds, Y-2(PDA)(3)(H2O)1]center dot 2H(2)O (PDA = 1,4-phenylenediacetate), 1 and Y1.8Tb0.2(PDA)(3)(H2O)1]center dot 2H(2)O, Tb@1 have been synthesized by employing solvent assisted liquid grinding followed by heating at 180 degrees C for 1' min and washing with water. Single crystal X-ray data of bulk 1 confirmed a three dimensional porous structure. The structure and morphology of 1 and Tb@1 were systematically characterized by PXRD, TGA, DSC, IR, SEM and EDX analysis. Dehydrated Tb@1 Tb@1'] shows a high intense visible green emission upon exposure to UV light. The green emission of Tb@1' was used for the detection of nitro explosives, such as 2,4,6-trinitrophenol (TNP), 1,3-dinitro benzene (DNB), 2,4-dinitro toluene (DNT), nitro benzene (NB), and 4-nitro toluene (NT) in acetonitrile. The results show that the emission intensity of dehydrated Tb@1' can be quenched by all the nitro analytes used in the present work. Remarkably, Tb@1' exhibited a high efficiency for TNP, DNB and DNT detection with K-SV K-SV = quenching constant based on linear Stern-Volmer plot] values of 70 920, 44 000 and 35 430 M-1, respectively, which are the highest values amongst known metal-organic materials. Using this material submicromolar level (equivalent to 0.18 ppm), a detection of nitro explosives has been achieved.
Resumo:
A rapid, metal-free and solvent-free (very low loading of solvent in few cases) reaction conditions for synthesizing thioamides and amides using a Bronsted super acid such as triflic acid has been developed. This method shows a broad substrate scope with a variety of electron-rich arenes including thiophene derivatives. The reaction works well for both aromatic as well as aliphatic isothiocyanates. Most of the thioamides are obtained in excellent yields in short reaction times and in most of the examples, a simple work up procedure has been developed which does not require further purification.
Resumo:
The theoretical estimation of the dissociation constant, or pK(a), of weak acids continues to be a challenging field. Here, we show that ab initio CarParrinello molecular dynamics simulations in conjunction with metadynamics calculations of the free-energy profile of the dissociation reaction provide reasonable estimates of the pK(a) value. Water molecules, sufficient to complete the three hydration shells surrounding the acid molecule, were included explicitly in the computation procedure. The free-energy profiles exhibit two distinct minima corresponding to the dissociated and neutral states of the acid, and the difference in their values provides the estimate for pK(a). We show for a series of organic acids that CPMD simulations in conjunction with metadynamics can provide reasonable estimates of pK(a) values. The acids investigated were aliphatic carboxylic acids, chlorine-substituted carboxylic acids, cis- and trans-butenedioic acid, and the isomers of hydroxybenzoic acid. These systems were chosen to highlight that the procedure could correctly account for the influence of the inductive effect as well as hydrogen bonding on pK(a) values of weak organic acids. In both situations, the CPMD metadynamics procedure faithfully reproduces the experimentally observed trend and the magnitudes of the pK(a) values.
Resumo:
Themono-alkylation of DPP derivatives leads to cofacial pi-pi stacking via H-bonding unlike their di-alkylated counterparts, which exhibit a classical herringbone packing pattern. Single crystal organic field-effect transistor (OFET) measurements reveal a significant enhancement of charge carrier mobility for mono-hexyl DPP derivatives.