977 resultados para Melt processing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

MIMO DSP is employed to improve the performance of degenerate mode-group division multiplexing in 8 km of conventional GI-MMF. Compensation of the mode coupling, induced by the launch and propagation, between and inside each degenerate mode-group is investigated in order to reduce the DSP complexity. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Centrifuge coating was implemented to fabricate nanostructured conductive layers through solution processing at room temperature. This coating procedure allows fast evaporation, thereby fixing the nanomaterials in their dispersed state onto a substrate by the centrifuge action. Material wastes were minimized by mitigating the effects of particle reaggregation. Using this method, we fabricate single-wall nanotube coatings on different substrates such as polyethylene terephthalate, polydimethylsiloxane, and an acrylic elastomer with no prior surface modification of the substrate. The effects of the choice of solvents on the morphology and subsequent performance of the coating network are studied. © 2002-2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Discrete element modeling is being used increasingly to simulate flow in fluidized beds. These models require complex measurement techniques to provide validation for the approximations inherent in the model. This paper introduces the idea of modeling the experiment to ensure that the validation is accurate. Specifically, a 3D, cylindrical gas-fluidized bed was simulated using a discrete element model (DEM) for particle motion coupled with computational fluid dynamics (CFD) to describe the flow of gas. The results for time-averaged, axial velocity during bubbling fluidization were compared with those from magnetic resonance (MR) experiments made on the bed. The DEM-CFD data were postprocessed with various methods to produce time-averaged velocity maps for comparison with the MR results, including a method which closely matched the pulse sequence and data processing procedure used in the MR experiments. The DEM-CFD results processed with the MR-type time-averaging closely matched experimental MR results, validating the DEM-CFD model. Analysis of different averaging procedures confirmed that MR time-averages of dynamic systems correspond to particle-weighted averaging, rather than frame-weighted averaging, and also demonstrated that the use of Gaussian slices in MR imaging of dynamic systems is valid. © 2013 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate an uncooled WDM system using standard WDM components and receiver signal processing, with a different number of receivers to transmitters, to allow wide temperature drift of the transmitter lasers. A 100 Gb/s 8-wavelength demonstrator has been developed, which proves the feasibility of the approach over 25 km of SMF. © 2012 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statistical analysis of diffusion tensor imaging (DTI) data requires a computational framework that is both numerically tractable (to account for the high dimensional nature of the data) and geometric (to account for the nonlinear nature of diffusion tensors). Building upon earlier studies exploiting a Riemannian framework to address these challenges, the present paper proposes a novel metric and an accompanying computational framework for DTI data processing. The proposed approach grounds the signal processing operations in interpolating curves. Well-chosen interpolating curves are shown to provide a computational framework that is at the same time tractable and information relevant for DTI processing. In addition, and in contrast to earlier methods, it provides an interpolation method which preserves anisotropy, a central information carried by diffusion tensor data. © 2013 Springer Science+Business Media New York.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Robust climbing in unstructured environments has been one of the long-standing challenges in robotics research. Among others, the control of large adhesion forces is still an important problem that significantly restricts the locomotion performance of climbing robots. The main contribution of this paper is to propose a novel approach to autonomous robot climbing which makes use of hot melt adhesion (HMA). The HMA material is known as an economical solution to achieve large adhesion forces, which can be varied by controlling the material temperature. For locomotion on both inclined and vertical walls, this paper investigates the basic characteristics of HMA material, and proposes a design and control of a climbing robot that uses the HMA material for attaching and detaching its body to the environment. The robot is equipped with servomotors and thermal control units to actively vary the temperature of the material, and the coordination of these components enables the robot to walk against the gravitational forces even with a relatively large body weight. A real-world platform is used to demonstrate locomotion on a vertical wall, and the experimental result shows the feasibility and overall performances of this approach. © 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physical connection and disconnection control has practical meanings for robot applications. Compared to conventional connection mechanisms, bonding involving a thermal process could provide high connection strength, high repeatability, and power-free connection maintenance, etc. In terms of disconnection, an established bond can be easily weakened with a temperature rise of the material used to form the bond. Hot melt adhesives (HMAs) are such material that can form adhesive bonds with any solid surfaces through a thermally induced solidification process. This paper proposes a novel control method for automatic connection and disconnection based on HMAs. More specifically, mathematical models are first established to describe the flowing behavior of HMAs at higher temperatures, as well as the temperature-dependent strength of an established HMA bond. These models are then validated with a specific type of HMA in a minimalistic robot setup equipped with two mechatronic devices for automated material handling. The validated models are eventually used for determining open parameters in a feedback controller for the robot to perform a pick-and-place task. Through a series of trials with different wooden and aluminum parts, we evaluate the performance of the automatic connection and disconnection methods in terms of speed, energy consumption, and robustness. © 1996-2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Robust climbing in unstructured environments is a long-standing challenge in robotics research. Recently there has been an increasing interest in using adhesive materials for that purpose. For example, a climbing robot using hot melt adhesives (HMAs) has demonstrated advantages in high attachment strength, reasonable operation costs, and applicability to different surfaces. Despite the advantages, there still remain several problems related to the attachment and detachment operations, which prevent this approach from being used in a broader range of applications. Among others, one of the main problems lies in the fact that the adhesive characteristics of this material were not fully understood fin the context of robotic climbing locomotion. As a result, the previous robot often could not achieve expected locomotion performances and "contaminated" the environment with HMAs left behind. In order to improve the locomotion performances, this paper focuses on attachment and detachment operations in robot climbing with HMAs. By systematically analyzing the adhesive property and bonding strength of HMAs to different materials, we propose a novel detachment mechanism that substantially improves climbing performances without HMA traces. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The capability of extending body structures is one of the most significant challenges in the robotics research and it has been partially explored in self-reconfigurable robotics. By using such a capability, a robot is able to adaptively change its structure from, for example, a wheel like body shape to a legged one to deal with complexity in the environment. Despite their expectations, the existing mechanisms for extending body structures are still highly complex and the flexibility in self-reconfiguration is still very limited. In order to account for the problems, this paper investigates a novel approach to robotic body extension by employing an unconventional material called Hot Melt Adhesives (HMAs). Because of its thermo-plastic and thermo-adhesive characteristics, this material can be used for additive fabrication based on a simple robotic manipulator while the established structures can be integrated into the robot's own body to accomplish a task which could not have been achieved otherwise. This paper first investigates the HMA material properties and its handling techniques, then evaluates performances of the proposed robotic body extension approach through a case study of a "water scooping" task. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of large-grain (RE)Ba2Cu3O7-δ ((RE)BCO; RE = rare earth) bulk superconductors to trap magnetic fields is determined by their critical current. With high trapped fields, however, bulk samples are subject to a relatively large Lorentz force, and their performance is limited primarily by their tensile strength. Consequently, sample reinforcement is the key to performance improvement in these technologically important materials. In this work, we report a trapped field of 17.6 T, the largest reported to date, in a stack of two silver-doped GdBCO superconducting bulk samples, each 25 mm in diameter, fabricated by top-seeded melt growth and reinforced with shrink-fit stainless steel. This sample preparation technique has the advantage of being relatively straightforward and inexpensive to implement, and offers the prospect of easy access to portable, high magnetic fields without any requirement for a sustaining current source. © 2014 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bighead carp is one of the most important freshwater filter-feeding fish of Chinese aquaculture. In recent decades, there have been a number of contradictory conclusions on the digestibility of algae by bighead carp based on the results from gut contents and digestive enzyme analysis or radiolabelled isotope techniques. Phytoplankton in the gut contents of bighead carp (cultured in a large net cage in Lake Donghu) were studied during March-May. In biomass, the dominant phytoplankters in the fore-gut contents were the centric diatom Cyclotella (average 54.5%, range 33.8-74.3%) and the dinoflagellate Cryptomonas (average 22.8%, range 6.8-55.8%). Phytoplankton in water samples were generally present in proportionate amounts in samples from the fore-guts of bighead carp. The size of most phytoplankton present in the intestine of bighead carp was between 8 and 20 mum in length. Bighead carp was also able to collect particles (as small as 5-6 mum) much smaller than their filtering net meshes, suggesting the importance of mucus in collecting small particles, Examination of the change in the integrity of Cyclotella on passage through the esophagus of bighead carp indicated that disruption of the algal cell walls is principally by the pharyngeal teeth, explaining the previous contradictory conclusions. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the quantum dynamics of a Cooper-pair box with a superconducting loop in the presence of a nonclassical microwave field. We demonstrate the existence of Rabi oscillations for both single- and multiphoton processes and, moreover, we propose a new quantum computing scheme (including one-bit and conditional two-bit gates) based on Josephson qubits coupled through microwaves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel pulsed rapid thermal processing (PRTP) method has been used for realizing solid-phese crystallization of amorphous silicon films prepared by plasma-enhanced chemical vapour deposit ion. The microstructure and surface morphology of the crystallized films were investigated using x-ray diffraction and atomic Force microscopy. The results indicate that PRTP is a suitable post-crystallization technique for fabricating large-area polycrystalline silicon films with good structural quality, such as large grain size, small lattice microstrain and smooth surface morphology on low-cost glass substrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we first present the process of the melt epitaxial (ME) growth method, and the improvement of low-temperature electron mobility of the long-wavelength InAsSb epilayers grown by ME in a fused silica boat. The electrical properties were investigated by van der Pauw measurement at 300 and 77 K. It is seen that the electron mobility of the InAsSb samples grown by graphite boat decreased from 55,700 to 26,600 cm(2)/V s when the temperature was reduced from 300 to 77 K, while for the samples grown by fused silica boat, the electron mobility increased from 52,600 at 300 K to 54,400 cm(2)/V s at 77 K. The electron mobility of 54,400cm(2)/Vs is the best result, so far, for the InAsSb materials with cutoff wavelength of 8-12 mum at 77 K. This may be attributed to the reduction of the carbon contamination by using a fused silica boat instead of a graphite boat. (C) 2002 Elsevier Science B.V. All rights reserved.