990 resultados para Mathematics, Applied
Resumo:
This dissertation develops a new mathematical approach that overcomes the effect of a data processing phenomenon known as “histogram binning” inherent to flow cytometry data. A real-time procedure is introduced to prove the effectiveness and fast implementation of such an approach on real-world data. The histogram binning effect is a dilemma posed by two seemingly antagonistic developments: (1) flow cytometry data in its histogram form is extended in its dynamic range to improve its analysis and interpretation, and (2) the inevitable dynamic range extension introduces an unwelcome side effect, the binning effect, which skews the statistics of the data, undermining as a consequence the accuracy of the analysis and the eventual interpretation of the data. ^ Researchers in the field contended with such a dilemma for many years, resorting either to hardware approaches that are rather costly with inherent calibration and noise effects; or have developed software techniques based on filtering the binning effect but without successfully preserving the statistical content of the original data. ^ The mathematical approach introduced in this dissertation is so appealing that a patent application has been filed. The contribution of this dissertation is an incremental scientific innovation based on a mathematical framework that will allow researchers in the field of flow cytometry to improve the interpretation of data knowing that its statistical meaning has been faithfully preserved for its optimized analysis. Furthermore, with the same mathematical foundation, proof of the origin of such an inherent artifact is provided. ^ These results are unique in that new mathematical derivations are established to define and solve the critical problem of the binning effect faced at the experimental assessment level, providing a data platform that preserves its statistical content. ^ In addition, a novel method for accumulating the log-transformed data was developed. This new method uses the properties of the transformation of statistical distributions to accumulate the output histogram in a non-integer and multi-channel fashion. Although the mathematics of this new mapping technique seem intricate, the concise nature of the derivations allow for an implementation procedure that lends itself to a real-time implementation using lookup tables, a task that is also introduced in this dissertation. ^
Resumo:
This dissertation develops a new mathematical approach that overcomes the effect of a data processing phenomenon known as "histogram binning" inherent to flow cytometry data. A real-time procedure is introduced to prove the effectiveness and fast implementation of such an approach on real-world data. The histogram binning effect is a dilemma posed by two seemingly antagonistic developments: (1) flow cytometry data in its histogram form is extended in its dynamic range to improve its analysis and interpretation, and (2) the inevitable dynamic range extension introduces an unwelcome side effect, the binning effect, which skews the statistics of the data, undermining as a consequence the accuracy of the analysis and the eventual interpretation of the data. Researchers in the field contended with such a dilemma for many years, resorting either to hardware approaches that are rather costly with inherent calibration and noise effects; or have developed software techniques based on filtering the binning effect but without successfully preserving the statistical content of the original data. The mathematical approach introduced in this dissertation is so appealing that a patent application has been filed. The contribution of this dissertation is an incremental scientific innovation based on a mathematical framework that will allow researchers in the field of flow cytometry to improve the interpretation of data knowing that its statistical meaning has been faithfully preserved for its optimized analysis. Furthermore, with the same mathematical foundation, proof of the origin of such an inherent artifact is provided. These results are unique in that new mathematical derivations are established to define and solve the critical problem of the binning effect faced at the experimental assessment level, providing a data platform that preserves its statistical content. In addition, a novel method for accumulating the log-transformed data was developed. This new method uses the properties of the transformation of statistical distributions to accumulate the output histogram in a non-integer and multi-channel fashion. Although the mathematics of this new mapping technique seem intricate, the concise nature of the derivations allow for an implementation procedure that lends itself to a real-time implementation using lookup tables, a task that is also introduced in this dissertation.
Resumo:
This study examines how one secondary school teacher’s use of purposeful oral mathematics language impacted her students’ language use and overall communication in written solutions while working with word problems in a grade nine academic mathematics class. Mathematics is often described as a distinct language. As with all languages, students must develop a sense for oral language before developing social practices such as listening, respecting others ideas, and writing. Effective writing is often seen by students that have strong oral language skills. Classroom observations, teacher and student interviews, and collected student work served as evidence to demonstrate the nature of both the teacher’s and the students’ use of oral mathematical language in the classroom, as well as the effect the discourse and language use had on students’ individual written solutions while working on word problems. Inductive coding for themes revealed that the teacher’s purposeful use of oral mathematical language had a positive impact on students’ written solutions. The teacher’s development of a mathematical discourse community created a space for the students to explore mathematical language and concepts that facilitated a deeper level of conceptual understanding of the learned material. The teacher’s oral language appeared to transfer into students written work albeit not with the same complexity of use of the teacher’s oral expression of the mathematical register. Students that learn mathematical language and concepts better appear to have a growth mindset, feel they have ownership over their learning, use reorganizational strategies, and help develop a discourse community.
Resumo:
A lightweight Java application suite has been developed and deployed allowing collaborative learning between students and tutors at remote locations. Students can engage in group activities online and also collaborate with tutors. A generic Java framework has been developed and applied to electronics, computing and mathematics education. The applications are respectively: (a) a digital circuit simulator, which allows students to collaborate in building simple or complex electronic circuits; (b) a Java programming environment where the paradigm is behavioural-based robotics, and (c) a differential equation solver useful in modelling of any complex and nonlinear dynamic system. Each student sees a common shared window on which may be added text or graphical objects and which can then be shared online. A built-in chat room supports collaborative dialogue. Students can work either in collaborative groups or else in teams as directed by the tutor. This paper summarises the technical architecture of the system as well as the pedagogical implications of the suite. A report of student evaluation is also presented distilled from use over a period of twelve months. We intend this suite to facilitate learning between groups at one or many institutions and to facilitate international collaboration. We also intend to use the suite as a tool to research the establishment and behaviour of collaborative learning groups. We shall make our software freely available to interested researchers.
Resumo:
The aim of this study is to investigate the effectiveness of problem-based learning (PBL) on students’ mathematical performance. This includes mathematics achievement and students’ attitudes towards mathematics for third and eighth grade students in Saudi Arabia. Mathematics achievement includes, knowing, applying, and reasoning domains, while students’ attitudes towards mathematics covers, ‘Like learning mathematics’, ‘value mathematics’, and ‘a confidence to learn mathematics’. This study goes deeper to examine the interaction of a PBL teaching strategy, with trained face-to-face and self-directed learning teachers, on students’ performance (mathematics achievement and attitudes towards mathematics). It also examines the interaction between different ability levels of students (high and low levels) with a PBL teaching strategy (with trained face-to-face or self-directed learning teachers) on students’ performance. It draws upon findings and techniques of the TIMSS international benchmarking studies. Mixed methods are used to analyse the quasi-experimental study data. One -way ANOVA, Mixed ANOVA, and paired t-tests models are used to analyse quantitative data, while a semi-structured interview with teachers, and author’s observations are used to enrich understanding of PBL and mathematical performance. The findings show that the PBL teaching strategy significantly improves students’ knowledge application, and is better than the traditional teaching methods among third grade students. This improvement, however, occurred only with the trained face-to-face teacher’s group. Furthermore, there is robust evidence that using a PBL teaching strategy could raise significantly students’ liking of learning mathematics, and confidence to learn mathematics, more than traditional teaching methods among third grade students. Howe ver, there was no evidence that PBL could improve students’ performance (mathematics achievement and attitudes towards mathematics), more than traditional teaching methods, among eighth grade students. In 8th grade, the findings for low achieving students show significant improvement compared to high achieving students, whether PBL is applied or not. However, for 3th grade students, no significant difference in mathematical achievement between high and low achieving students was found. The results were not expected for high achieving students and this is also discussed. The implications of these findings for mathematics education in Saudi Arabia are considered.
Resumo:
In this work, the energy response functions of a CdTe detector were obtained by Monte Carlo (MC) simulation in the energy range from 5 to 160keV, using the PENELOPE code. In the response calculations the carrier transport features and the detector resolution were included. The computed energy response function was validated through comparison with experimental results obtained with (241)Am and (152)Eu sources. In order to investigate the influence of the correction by the detector response at diagnostic energy range, x-ray spectra were measured using a CdTe detector (model XR-100T, Amptek), and then corrected by the energy response of the detector using the stripping procedure. Results showed that the CdTe exhibits good energy response at low energies (below 40keV), showing only small distortions on the measured spectra. For energies below about 80keV, the contribution of the escape of Cd- and Te-K x-rays produce significant distortions on the measured x-ray spectra. For higher energies, the most important correction is the detector efficiency and the carrier trapping effects. The results showed that, after correction by the energy response, the measured spectra are in good agreement with those provided by a theoretical model of the literature. Finally, our results showed that the detailed knowledge of the response function and a proper correction procedure are fundamental for achieving more accurate spectra from which quality parameters (i.e., half-value layer and homogeneity coefficient) can be determined.
Resumo:
This postdoctoral study on the application of the RIME intervention in women that had undergone mastectomy and were in treatment, aimed to promote psychospiritual and social transformations to improve the quality of life, self-esteem and hope. A total of 28 women participated and were randomized into two groups. Brief Psychotherapy (PB) (average of six sessions) was administered in the Control Group, and RIME (three sessions) and BP (average of five sessions) were applied in the RIME Group. The quantitative results indicated a significant improvement (38.3%) in the Perception of Quality of Life after RIME according to the WHOQOL, compared both to the BP of the Control Group (12.5%), and the BP of the RIME Group (16.2%). There was a significant improvement in Self-esteem (Rosenberg) after RIME (14.6%) compared to the BP of the Control Group (worsened 35.9%), and the BP of the RIME Group (8.3%). The improvement in well-being, considering the focus worked on (Visual Analog Scale), was significant in the RIME Group (bad to good), as well as in the Control Group (unpleasant to good). The qualitative results indicated that RIME promotes creative transformations in the intrapsychic and interpersonal dimensions, so that new meanings and/or new attitudes emerge into the consciousness. It was observed that RIME has more strength of psychic structure, ego strengthening and provides a faster transformation that BP, therefore it can be indicated for crisis treatment in the hospital environment.
Resumo:
The present review addresses certain important aspects regarding nanoparticles and the environment, with an emphasis on plant science. The production and characterization of nanoparticles is the focus of this review, providing an idea of the range and the consolidation of these aspects in the literature, with modifications on the routes of synthesis and the application of the analytical techniques for characterization of the nanoparticles (NPs). Additionally, aspects related to the interaction between the NPs and plants, their toxicities, and the phytoremediation process, among others, are also discussed. Future trends are also presented, supplying evidence for certain possibilities regarding new research involving nanoparticles and plants.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
This work aims at the geochemical study of Pitinga cryolite mineralization through REE and Y analyses in disseminated and massive cryolite ore deposits, as well as in fluorite occurrences. REE signatures in fluorite and cryolite are similar to those in the Madeira albite granite. The highest ΣREE values are found in magmatic cryolite (677 to 1345 ppm); ΣREE is lower in massive cryolite. Average values for the different cryolite types are 10.3 ppm, 6.66 ppm and 8.38 ppm (for nucleated, caramel and white types, respectively). Disseminated fluorite displays higher ΣREE values (1708 and 1526ppm) than fluorite in late veins(34.81ppm). Yttrium concentration is higher in disseminated fluorite and in magmatic cryolite. The evolution of several parameters (REEtotal, LREE/HREE, Y) was followed throughout successive stages of evolution in albite granites and associated mineralization. At the end of the process, late cryolite was formed with low REEtotal content. REE data indicate that the MCD was formed by, and the disseminated ore enriched by (additional formation of hydrothermal disseminated cryolite), hydrothermal fluids, residual from albite granite. The presence of tetrads is poorly defined, although nucleated, caramel and white cryolite types show evidence for tetrad effect.
Resumo:
We describe finite sets of points, called sentinels, which allow us to decide if isometric copies of polygons, convex or not, intersect. As an example of the applicability of the concept of sentinel, we explain how they can be used to formulate an algorithm based on the optimization of differentiable models to pack polygons in convex sets. Mathematical subject classification: 90C53, 65K05.
Resumo:
According to some estimates, world's population growth is expected about 50% over the next 50 years. Thus, one of the greatest challenges faced by Engineering is to find effective options to food storage and conservation. Some researchers have investigated how to design durable buildings for storing and conserving food. Nowadays, developing concrete with mechanical resistance for room temperatures is a parameter that can be achieved easily. On the other hand, associating it to low temperature of approximately 35 °C negative requires less empiricism, being necessary a suitable dosage method and a careful selection of the material constituents. This ongoing study involves these parameters. The presented concrete was analyzed through non-destructive tests that examines the material properties periodically and verifies its physical integrity. Concrete with and without incorporated air were studied. The results demonstrated that both are resistant to freezing.
Resumo:
We show some evidences that the Southeastern Brazilian Continental Shelf (SBCS) has a devil's staircase structure, with a sequence of scarps and terraces with widths that obey fractal formation rules. Since the formation of these features is linked with the sea-level variations, we say that the sea level changes in an organized pulsating way. Although the proposed approach was applied in a particular region of the Earth, it is suitable to be applied in an integrated way to other shelves around the world, since the analyses favor the revelation of the global sea-level variations. Copyright (C) 2009 M. S. Baptista and L. A. Conti.
Resumo:
A combination of trajectory sensitivity method and master-slave synchronization was proposed to parameter estimation of nonlinear systems. It was shown that master-slave coupling increases the robustness of the trajectory sensitivity algorithm with respect to the initial guess of parameters. Since synchronization is not a guarantee that the estimation process converges to the correct parameters, a conditional test that guarantees that the new combined methodology estimates the true values of parameters was proposed. This conditional test was successfully applied to Lorenz's and Chua's systems, and the proposed parameter estimation algorithm has shown to be very robust with respect to parameter initial guesses and measurement noise for these examples. Copyright (C) 2009 Elmer P. T. Cari et al.