952 resultados para Materials testing laboratories
Resumo:
Aromatherapy has been found to have some effectiveness in treating conditions such as postoperative nausea and vomiting, however unless clinicians are aware of and convinced by this evidence, it is unlikely they will choose to use it with their patients. The aim of this study was to test and modify an existing tool, Martin and Furnham’s Beliefs About Aromatherapy Scale in order to make it relevant and meaningful for use with a population of nurses and midwives working in an acute hospital setting. A Delphi process was used to modify the tool and then it was tested in a population of nurses and midwives, then exploratory factor analysis was conducted. The modified tool is reliable and valid for measuring beliefs about aromatherapy in this population.
Resumo:
It is widely recognized that Dorothy Heathcote was a dynamic and radical teacher who transformed and continually reinvented drama teaching. She did this by allowing her emerging thinking and understandings to flow from, and be tested by, regular and intensive ‘practicing’ in the classroom. In this way theoretical claims were grounded and evidenced in authentic classroom practice. And yet, for all her impact, it is rare to hear the claim that Heathcote’s pedagogic breakthroughs resulted from a legitimate research methodology. Clever and charismatic teaching yes; research no. One of the world’s best teachers certainly, but not a researcher; even though every lesson was experimental and every classroom was a site for discovery. This paper investigates that conundrum firstly by acknowledging that Heathcote’s practice-led teaching approach to discovery did not map comfortably on to the established educational research traditions of the day. It argues that traditional research methodologies, with their well-established protocols and methods, could not understand or embrace a research process which does its work by creating ‘fictional realities’ of openness, allegory and uncertainty. In recent years however it can be seen that Heathcote’s practice led-teaching, so essential for advancing the field, closely aligns with what many contemporary researchers are now calling practice-led research or practice as research or, in many Nordic countries, artistic research. A form of performative research, practice-led research has not emerged from the field of education but rather from the creative arts. Seeking to develop ways of researching creative practice which is deeply sympathetic and respectful of that practice, artist-researchers have developed practice-led research “which is initiated in practice, where questions, problems, challenges are identified and formed by the needs of practice and practitioners” (Grey, 1996). This sits comfortably with Heathcote’s classroom priority of “discovering by trial, error and testing; using available materials with respect for their nature, and being guided by this appreciation of their potential” (Heathcote, 1967). The paper will conclude by testing the dynamics of Heathcote’s practice-led teaching against the six conditions of practice-led research (Haseman&Mafe, 2011), a testing which will allow for a re-interpretation and re-housing of Dorothy Heathcote’s classroom-based teaching methodology as a form of performative research in its own right.
Resumo:
This Special Issue presents recent research advances in various aspects of advanced nanomaterials including synthesis, micro- and nanostructures, mechanical properties, modeling, and applications for material nanotechnology community. In particular, it aims to reflect recent advances in mechanical behaviors, for example, stiffness, strength, ductility, fatigue, and wear resistance, of various nanomaterials including nanocrystalline, inorganic, nonmetallic nanomaterials, composites with nanosized fillers, and biomaterials with nanosized structures. The role of this Special Issue is to bridge the gaps among fabrication techniques, experimental techniques, numerical modeling, and applications for some new nanomaterials and to investigate some key issues related to the mechanical properties of the nanomaterials. It brings together researchers working at the frontier of the mechanical behavior of nanomaterials...
Resumo:
Many researchers in the field of civil structural health monitoring have developed and tested their methods on simple to moderately complex laboratory structures such as beams, plates, frames, and trusses. Field work has also been conducted by many researchers and practitioners on more complex operating bridges. Most laboratory structures do not adequately replicate the complexity of truss bridges. This paper presents some preliminary results of experimental modal testing and analysis of the bridge model presented in the companion paper, using the peak picking method, and compares these results with those of a simple numerical model of the structure. Three dominant modes of vibration were experimentally identified under 15 Hz. The mode shapes and order of the modes matched those of the numerical model; however, the frequencies did not match.
Resumo:
Masonry bond is affected by many parameters such as the type of mortar used, the techniques of dispersion of mortar and the surface texture of the concrete blocks. Additionally it is understood from the studies on conventional masonry that the bond characteristics are also influenced by the curing methods as well as the age of the bond at the time of testing. These effects on thin layer mortared masonry employing polymer cement mortars are not well understood. Therefore, the effect of curing methods and age to the bond strength and deformation of masonry containing thin layered polymer cement mortar was investigated as part of an ongoing research program at the Queensland University of Technology. This paper presents an experimental investigation of the flexural and shear bond characteristics of the thin layer mortared concrete masonry. The parameters examined include the effects curing and ageing to the bond development over a period from 14 days to 56 days after fabrication. The results exhibit that dry cured thin layer mortared masonry exhibits higher bond strength and Young’s and shear moduli compared to the wet cured specimens.
Resumo:
This paper presents a study on the effectiveness of two forms of reinforced grout confining systems for hollow concrete block masonry. The systems considered are: (1) a layer of grout directly confining the unreinforced masonry, and (2) a layer of grout indirectly confining the unreinforced masonry through block shells. The study involves experimental testing and finite-element (FE) modeling of six diagonally loaded masonry panels containing the two confining systems. The failure mode, the ultimate load, and the load-deformation behaviors of the diagonally loaded panels were successfully simulated using the finite-element model. In-plane shear strength and stiffness of the masonry thus determined are used to evaluate some selected models of the confined masonry shear including the strut-and-tie model reported in the literature. The evaluated strut width is compared with the prediction of the FE model and then extended for rational prediction of the strength of confined masonry shear walls.
Resumo:
While the implementation of the IEC 61850 standard has significantly enhanced the performance of communications in electrical substations, it has also increased the complexity of the system. Subsequently, these added elaborations have introduced new challenges in relation to the skills and tools required for the design, test and maintenance of 61850-compatible substations. This paper describes a practical experience of testing a protection relay using a non-conventional test equipment; in addition, it proposes a third party software technique to reveal the contents of the packets transferred on the substation network. Using this approach, the standard objects can be linked and interpreted to what the end-users normally see in the IED and test equipment proprietary software programs.
Resumo:
Design Proposal for the Blue Lunar Support Hub The conceptual design of a space station is one of the most challenging tasks in aerospace engineering. The history of the space station Mir and the assembly of the International Space Station demonstrate that even within the assembly phase quick solutions have to be found to cope with budget and technical problems or changing objectives. This report is the outcome of the conceptual design of the Space Station Design Workshop (SSDW) 2007, which took place as an international design project from the 16th to the 21st of July 2007 at the Australian Centre for Field Robotics (ACFR), University of Sydney, Australia. The participants were tasked to design a human-tended space station in low lunar orbit (LLO) focusing on supporting future missions to the moon in a programmatic context of space exploration beyond low Earth orbit (LEO). The design included incorporating elements from systems engineering to interior architecture. The customised, intuitive, rapid-turnaround software tools enabled the team to successfully tackle the complex problem of conceptual design of crewed space systems. A strong emphasis was put on improving the integration of the human crew, as it is the major contributor to mission success, while always respecting the boundary conditions imposed by the challenging environment of space. This report documents the methodology, tools and outcomes of the Space Station Design Workshop during the SSDW 2007. The design results produced by Team Blue are presented.
Resumo:
Developing and maintaining a successful institutional repository for research publications requires a considerable investment by the institution. Most of the money is spent on developing the skill-sets of existing staff or hiring new staff with the necessary skills. The return on this investment can be magnified by using this valuable infrastructure to curate collections of other materials such as learning objects, student work, conference proceedings and institutional or local community heritage materials. When Queensland University of Technology (QUT) implemented its repository for research publications (QUT ePrints) over 11 years ago, it was one of the first institutional repositories to be established in Australia. Currently, the repository holds over 29,000 open access research publications and the cumulative total number of full-text downloads for these document now exceeds 16 million. The full-text deposit rate for recently-published peer reviewed papers (currently over 74%) shows how well the repository has been embraced by QUT researchers. The success of QUT ePrints has resulted in requests to accommodate a plethora of materials which are ‘out of scope’ for this repository. QUT Library saw this as an opportunity to use its repository infrastructure (software, technical know-how and policies) to develop and implement a metadata repository for its research datasets (QUT Research Data Finder), a repository for research-related software (QUT Software Finder) and to curate a number of digital collections of institutional and local community heritage materials (QUT Digital Collections). This poster describes the repositories and digital collections curated by QUT Library and outlines the value delivered to the institution, and the wider community, by these initiatives.
Resumo:
Science, technology, engineering, and mathematics (STEM) education is an emerging initiative in Australia, particularly in primary schools. This qualitative research aimed to understand Year 4 students' involvement in an integrated STEM education unit that focused on science concepts (e.g., states of matter, testing properties of materials) and mathematics concepts (e.g., 3D shapes and metric measurements) for designing, making and testing a strong and safe medical kit to insulate medicines (ice cubes) at desirable temperatures. Data collection tools included student work samples, photographs, written responses from students and the teacher, and researcher notes. In a post-hoc analysis, a pedagogical knowledge practice framework (i.e., planning, timetabling, preparation, teaching strategies, content knowledge, problem solving, classroom management, questioning, implementation, assessment, and viewpoints) was used to explain links to student outcomes in STEM education. The study showed how pedagogical knowledge practices may be linked to student outcomes (knowledge, understanding, skill development, and values and attitudes) for a STEM education activity.
Resumo:
In strengthening systems, the CFRP (Carbon Fibre Reinforced Polymer) materials typically have excellent resistance against environmental conditions; however, the performance of adhesives between CFRP and steel is generally affected by various environmental conditions such as marine environment, cold and hot weather. This paper presents the comparative durability study of CFRP strengthened tubular steel structures by using two different adhesives such as MBrace saturant and Araldite K630 under four-point bending. The program consisted of testing twelve CFRP strengthened specimens having treated with epoxy based adhesion promoter, untreated surface and one unstrengthened specimen and conditioned under cold weather for 3 and 6 months to determine the environmental durability. The beams were then loaded to failure in quasi-static manner under four-point bending. The structural responses of CFRP strengthened tubular steel beams were compared in terms of failure load, stiffness and modes of failure. The research findings show that the cold weather immersion had adversely affected the durability of CFRP strengthened steel members. Design factor is also proposed to address the short-terms durability performance under cold weather.
Resumo:
Drying of food materials offers a significant increase in the shelf life of food materials, along with the modification of quality attributes due to simultaneous heat and mass transfer. Shrinkage and variations in porosity are the common micro and microstructural changes that take place during the drying of mostly the food materials. Although extensive research has been carried out on the prediction of shrinkage and porosity over the time of drying, no single model exists which consider both material properties and process condition in the same model. In this study, an attempt has been made to develop and validate shrinkage and porosity models of food materials during drying considering both process parameters and sample properties. The stored energy within the sample, elastic potential energy, glass transition temperature and physical properties of the sample such as initial porosity, particle density, bulk density and moisture content have been taken into consideration. Physical properties and validation have been made by using a universal testing machine ( Instron 2kN), a profilometer (Nanovea) and a pycnometer. Apart from these, COMSOL Multiphysics 4.4 has been used to solve heat and mass transfer physics. Results obtained from models of shrinkage and porosity is quite consistent with the experimental data. Successful implementation of these models would ensure the use of optimum energy in the course of drying and better quality retention of dried foods.
Resumo:
Osteoblast lineage cells are direct effectors of osteogenesis and are, therefore, commonly used to evaluate the in vitro osteogenic capacity of bone substitute materials. This method has served its purposes when testing novel bone biomaterials; however, inconsistent results between in vitro and in vivo studies suggest the mechanisms that govern a material's capacity to mediate osteogenesis are not well understood. The emerging field of osteoimmunology and immunomodulation has informed a paradigm shift in our view of bone biomaterials–from one of an inert to an osteoimmunomodulatory material–highlighting the importance of immune cells in materials-mediated osteogenesis. Neglecting the importance of the immune response during this process is a major shortcoming of the current evaluation protocol. In this study we evaluated a potential angiogenic bone substitute material cobalt incorporated with β-tricalcium phosphate (CCP), comparing the traditional “one cell type” approach with a “multiple cell types” approach to assess osteogenesis, the latter including the use of immune cells. We found that CCP extract by itself was sufficient to enhance osteogenic differentiation of bone marrow stem cells (BMSCs), whereas this effect was cancelled out when macrophages were involved. In response to CCP, the macrophage phenotype switched to the M1 extreme, releasing pro-inflammatory cytokines and bone catabolic factors. When the CCP materials were implanted into a rat femur condyle defect model, there was a significant increase of inflammatory markers and bone destruction, coupled with fibrous encapsulation rather than new bone formation. These findings demonstrated that the inclusion of immune cells (macrophages) in the in vitro assessment matched the in vivo tissue response, and that this method provides a more accurate indication of the essential role of immune cells when assessing materials-stimulated osteogenesis in vitro.
Resumo:
The marginalisation that Indigenous secondary students experience in zoology science lessons can be attributed to a chasm they experience between their life in community and the classroom. The study found that the integration of Indigenous and Western science knowledge can provide transformative learning experiences for students which work to strengthen their sense of belonging to community and school. Using action research, the study investigated the integration of both-ways science education into students' zoology lessons. It privileged the community's cultural expertise, practices and connections with students and their families, which worked to enhance student engagement in their learning.
Resumo:
Background In the emergency department, portable point-of-care testing (POCT) coagulation devices may facilitate stroke patient care by providing rapid International Normalized Ratio (INR) measurement. The objective of this study was to evaluate the reliability, validity, and impact on clinical decision-making of a POCT device for INR testing in the setting of acute ischemic stroke (AIS). Methods A total of 150 patients (50 healthy volunteers, 51 anticoagulated patients, 49 AIS patients) were assessed in a tertiary care facility. The INR's were measured using the Roche Coaguchek S and the standard laboratory technique. Results The interclass correlation coefficient and 95% confidence interval between overall POCT device and standard laboratory value INRs was high (0.932 (0.69 - 0.78). In the AIS group alone, the correlation coefficient and 95% CI was also high 0.937 (0.59 - 0.74) and diagnostic accuracy of the POCT device was 94%. Conclusions When used by a trained health professional in the emergency department to assess INR in acute ischemic stroke patients, the CoaguChek S is reliable and provides rapid results. However, as concordance with laboratory INR values decreases with higher INR values, it is recommended that with CoaguChek S INRs in the > 1.5 range, a standard laboratory measurement be used to confirm the results.