935 resultados para Mast cell tumors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The majority of small-cell lung cancers (SCLCs) express p16 but not pRb. Given our previous study showing loss of pRb in Merkel cell carcinoma (MCC)/neuroendocrine carcinoma of the skin and the clinicopathological similarities between SCLC and MCC, we wished to determine if this was also the case in MCC. Twenty-nine MCC specimens from 23 patients were examined for deletions at 10 loci on 9p and 1 on 9q. No loss of heterozygosity (LOH) was seen in 9 patients including 2 for which tumour and cell line DNAs were examined. Four patients had LOH for all informative loci on 9p. Ten tumours showed more limited regions of loss on 9p, and from these 2 common regions of deletion were determined. Half of all informative cases had LOH at D9S168, the most telomeric marker examined, and 3 specimens showed loss of only D9S168. A second region (IFNA-D9S126) showed LOH in 10 (44%) cases, and case MCC26 showed LOH for only D9S126, implicating genes centromeric of the CDKN2A locus. No mutations in the coding regions of p16 were seen in 7 cell lines tested, and reactivity to anti-p16 antibody was seen in all 11 tumour specimens examined and in 6 of 7 cell lines from 6 patients. Furthermore, all cell lines examined reacted with anti-p14(ARF) antibody. These results suggest that neither transcript of the CDKN2A locus is the target of deletions on 9p in MCC and imply the existence of tumour-suppressor genes mapping both centromeric and telomeric of this locus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytogenetic and loss of heterozygosity (LOH) studies have long indicated the presence of a tumor suppressor gene (TSG) on 9p involved in the development of melanoma. Although LOH at 9p has been reported in approximately 60% of melanoma tumors, only 5-10% of these tumors have been shown to carry CDKN2A mutations, raising the possibility that another TSG involved in melanoma maps to chromosome 9p. To investigate this possibility, a panel of 37 melanomas derived from 35 individuals was analyzed for CDKN2A mutations by single-strand conformation polymorphism analysis and sequencing. The melanoma samples were then typed for 15 markers that map to 9p13-24 to investigate LOH trends in this region. In those tumors demonstrating retention of heterozygosity at markers flanking CDKN2A and LOH on one or both sides of the gene, multiplex microsatellite PCR was performed to rule out homozygous deletion of the region encompassing CDKN2A. CDKN2A mutations were found in tumors from 5 patients [5 (14%) of 35], 4 of which demonstrated LOH across the entire region examined. The remaining tumor with no observed LOH carried two point mutations, one on each allele. Although LOH was identified at one or more markers in 22 (59%) of 37 melanoma tumors corresponding to 20 (57%) of 35 individuals, only 11 tumors from 9 individuals [9 (26%) of 35] demonstrated LOH at D9S942 and D9S1748 the markers closest to CDKN2A. Of the remaining 11 tumors with LOH 9 demonstrated LOH at two or more contiguous markers either centromeric and/or telomeric to CDKN2A while retaining heterozygosity at several markers adjacent to CDKN2A. Multiplex PCR revealed one tumor carried a homozygous deletion extending from D9S1748 to the IFN-alpha locus. In the remaining eight tumors, multiplex PCR demonstrated that the observed heterozygosity was not attributable to homozygous deletion and stromal contamination at D9S1748, D9S942, or D9S974, as measured by comparative amplification strengths, which indicates that retention of heterozygosity with flanking LOH does not always indicate a homozygous deletion. This report supports the conclusions of previous studies that a least two TSGs involved in melanoma development in addition to CDKN2A may reside on chromosome 9p.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in exon 3 of the CTNNB1 gene encoding beta-catenin have been reported in colorectal cancer cell lines and tumours. Although one study reported mutations or deletions affecting beta-catenin in 20% of melanoma cell lines, subsequent reports detected a much lower frequency of aberrations in uncultured melanomas. To determine whether this difference in mutation frequency reflected an in vitro culturing artefact, exon 3 of CTNNB1 was screened in a panel of 62 melanoma cell lines. In addition, reverse transcription-polymerase chain reaction (RT-PCR) was performed to detect intragenic deletions affecting exon 3. One out of 62 (1.6%) cell lines was found to carry a mutation, indicating that aberration of the Wnt-1/wingless pathway through activation of beta-catenin is a rare event, even in melanoma cell lines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deletions detected in cytogenetic and loss of heterozygosity (LOH) studies indicate that at least one tumour suppressor gene maps to the long arm of chromosome 10. Previous deletion mapping studies have observed LOH on 10q in about 30% of melanomas analysed. The PTEN gene, mapping to chromosome band 10q23.3, encodes a protein with both lipid and protein phosphatase activity. Somatic mutations and deletions in have been detected in a variety of cell lines and tumours, including melanoma samples. We performed mutation analyses and extensive allelic loss studies to investigate the role this gene plays in melanoma pathogenesis. We found that a total of 34 out of 57 (60%) melanoma cell lines carried hemizygous deletions of chromosome 10q encompassing the PTEN locus. A further three cell lines carried smaller deletions excluding PTEN. Inactivation of both PTEN alleles by exon-specific homozygous deletion or mutation was observed in 13 out of 57 (23%) melanoma cell lines. The mutation spectrum observed does not indicate an important role for ultraviolet radiation in the genesis of these mutations, and evidence from three cell lines supports the acquisition of PTEN aberrations in culture. Ten out of 49 (20%) matched melanoma tumour/normal samples harboured hemizygous deletions of either the whole chromosome or most of the long arm. Mutations within were detected in only one of the 10 tumours demonstrating LOH at 10q23 that were analysed. These results suggest that PTEN inactivation may be important for the propagation of melanoma cells in culture, and that another chromosome 10 tumour suppressor gene may be important for melanoma pathogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Once melanoma metastasizes, no effective treatment modalities prolong survival in most patients. This notorious refractoriness to therapy challenges investigators to identify agents that overcome melanoma resistance to apoptosis. Whereas many survival pathways contribute to the death-defying phenotype in melanoma, a defect in apoptotic machinery previously highlighted inactivation of Apaf-1, an apoptosome component engaged after mitochondrial damage. During studies involving Notch signaling in melanoma, we observed a gamma-secretase tripeptide inhibitor (GSI; z-Leu-Leu-Nle-CHO), selected from a group of compounds originally used in Alzheimer's disease, induced apoptosis in nine of nine melanoma lines. GSI only induced G2-M growth arrest (but not killing) in five of five normal melanocyte cultures tested. Effective killing of melanoma cells by GSI involved new protein synthesis and a mitochondrial-based pathway mediated by up-regulation of BH3-only members (Bim and NOXA). p53 activation was not necessary for up-regulation of NOXA in melanoma cells. Blocking GSI-induced NOXA using an antisense (but not control) oligonucleotide significantly reduced the apoptotic response. GSI also killed melanoma cell lines with low Apaf-1 levels. We conclude that GSI is highly effective in killing melanoma cells while sparing normal melanocytes. Direct enhancement of BH3-only proteins executes an apoptotic program overcoming resistance of this lethal tumor. Identification of a p53-independent apoptotic pathway in melanoma cells, including cells with low Apaf-1, bypasses an impediment to current cytotoxic therapy and provides new targets for future therapeutic trials involving chemoresistant tumors.