981 resultados para Marker assisted selection
Resumo:
Five experimental gillnet each measuring 50mx 3m nylon multi filament netting of 3" by210/2 mesh size were constructed using 40%, 45%, 50%, 55% and 60% hanging percentages, the report was carried out at Yunawa fishing village on the eastern bank of Lake Kainji. The nets were set over night (6 hours approximately). Between April-July 2004, the fish caught by the five nets were recorded taking into consideration the three mode of capture i.e. enmeshing entanglement and wedging Weight number and percentage mean weight and number based on species at five different hanging ratios were analyzed in general 50% hanging ratio was found to be the best followed by 40% among others. There was significant difference (P<0.05) in the mode of capture for both hanging ratios. Most of the fish were caught by entanglement i.e. about 83% of the catch was by entanglement while 505 hanging ratio was the best considered after the report. The occurrence of species of the five hanging ratios has significant difference (P<0.05) in terms of catch by weight and number
Resumo:
The relative catch performance and selectively of gillnets and trammel nets were investigated in 12 sampling stations in Lake Kainji, Nigeria. 3 types of nets with dimensions 50mx3m were constructed using 76mm and 178mm meshsizes for two gillnets, 76mm and 178mm meshsizes for the lint and ar mour nets of the trammelnets respectively. All the nets were randomly ganged together to form a fleet of nine nets each, and were set twice in each of the 12 stations which gave a total of 24 fishing operations. A total of 365 fish weighing 88.9kg and belonging to 16 different species were caught in all the nets. The trammelnet had the highest catch by number and weight constituting 60% and 69.22% of the total catch and weight respectively with a relative species Diversity Index of 0.82. This was followed by 76mm gillnet which constituted 38.63% by number, 28.09% by weight, 0.69 relative Species Diversity Index. The 178mm gillnet had the least catch of 1.37% and 2.9% by number and weight respectively with 0.25 relative Species Diversity Index. There was significant difference (P<0.05) in the number and weight of fish caught in the different nets. The minimum selection length for these species caught were the same for each net. The trammel net had a wider selection range that skewed to the right, a higher modal and median length indicating larger individual species being entangled in the net
Resumo:
Designers who want to manufacture a hardenable steel component need to select both the steel and its heat treatment. This project aims to develop a selection methodology for steels and process routes as an aid to designers. Three studies were conducted: - production of software to calculate the "equivalent diameter" and "equivalent Jominy distance" for simple shapes of a steel component; - prediction of semi-empirical Jominy curves (as-cooled) using CCT diagrams and process modelling methods, which were validated by experiment on plain carbon steels; - investigation of tempering of Jominy bars to explore the potential for semi-empirical models for the hardness after tempering.
Resumo:
The termite hindgut microbial ecosystem functions like a miniature lignocellulose-metabolizing natural bioreactor, has significant implications to nutrient cycling in the terrestrial environment, and represents an array of microbial metabolic diversity. Deciphering the intricacies of this microbial community to obtain as complete a picture as possible of how it functions as a whole, requires a combination of various traditional and cutting-edge bioinformatic, molecular, physiological, and culturing approaches. Isolates from this ecosystem, including Treponema primitia str. ZAS-1 and ZAS-2 as well as T. azotonutricium str. ZAS-9, have been significant resources for better understanding the termite system. While not all functions predicted by the genomes of these three isolates are demonstrated in vitro, these isolates do have the capacity for several metabolisms unique to spirochetes and critical to the termite system’s reliance upon lignocellulose. In this thesis, work culturing, enriching for, and isolating diverse microorganisms from the termite hindgut is discussed. Additionally, strategies of members of the termite hindgut microbial community to defend against O2-stress and to generate acetate, the “biofuel” of the termite system, are proposed. In particular, catechol 2,3-dioxygenase and other meta-cleavage catabolic pathway genes are described in the “anaerobic” termite hindgut spirochetes T. primitia str. ZAS-1 and ZAS-2, and the first evidence for aromatic ring cleavage in the phylum (division) Spirochetes is also presented. These results suggest that the potential for O2-dependent, yet nonrespiratory, metabolisms of plant-derived aromatics should be re-evaluated in termite hindgut communities. Potential future work is also illustrated.
Resumo:
The signal recognition particle (SRP) targets membrane and secretory proteins to their correct cellular destination with remarkably high fidelity. Previous studies have shown that multiple checkpoints exist within this targeting pathway that allows ‘correct cargo’ to be quickly and efficiently targeted and for ‘incorrect cargo’ to be promptly rejected. In this work, we delved further into understanding the mechanisms of how substrates are selected or discarded by the SRP. First, we discovered the role of the SRP fingerloop and how it activates the SRP and SRP receptor (SR) GTPases to target and unload cargo in response to signal sequence binding. Second, we learned how an ‘avoidance signal’ found in the bacterial autotransporter, EspP, allows this protein to escape the SRP pathway by causing the SRP and SR to form a ‘distorted’ complex that is inefficient in delivering the cargo to the membrane. Lastly, we determined how Trigger Factor, a co-translational chaperone, helps SRP discriminate against ‘incorrect cargo’ at three distinct stages: SRP binding to RNC; targeting of RNC to the membrane via SRP-FtsY assembly; and stronger antagonism of SRP targeting of ribosomes bearing nascent polypeptides that exceed a critical length. Overall, results delineate the rich underlying mechanisms by which SRP recognizes its substrates, which in turn activates the targeting pathway and provides a conceptual foundation to understand how timely and accurate selection of substrates is achieved by this protein targeting machinery.