980 resultados para Manuscripts, Low German
Resumo:
a-Si:H/InSb structures have been fabricated by glow discharge deposition of a-Si on bulk InSb substrates in hydrogen atmosphere. The structure shows interesting switching properties, toggling between a high resistance and a conducting state with OFF to ON resistance ratio of 10(6) at remarkably low threshold voltages of 0.3 V at room temperature. The low threshold voltage for this structure, as compared to the higher switching threshold of about 30 V for other a-Si based structures, has been achieved by the use of InSb as a substrate, capable of high carrier injection. (C) 1997 Published by Elsevier Science Ltd.
Resumo:
We find that at a mole fraction 0.05 of DMSO (x(DMSO) = 0.05) in aqueous solution, a linear hydrocarbon chain of intermediate length (n = 30-40) adopts the most stable collapsed conformation. In pure water, the same chain exhibits an intermittent oscillation between the collapsed and the extended coiled conformations. Even when the mole fraction of DMSO in the bulk is 0.05, the concentration of the same in the first hydration layer around the hydrocarbon of chain length 30 (n = 30) is as large as 17%. Formation of such hydrophobic environment around the hydrocarbon chain may be viewed as the reason for the collapsed conformation gaining additional stability. We find a second anomalous behavior to emerge near x(DMSO) = 0.15, due to a chain-like aggregation of the methyl groups of DMSO in water that lowers the relative concentration of the DMSO molecules in the hydration layer. We further find that as the concentration of DMSO is gradually increased, it progressively attains the extended coiled structure as the stable conformation. Although Flory-Huggins theory (for binary mixture solvent) fails to predict the anomaly at x(DMSO) = 0.05, it seems to capture the essence of the anomaly at 0.15.
Resumo:
We investigate the influence of the ferromagnetic layer on the magnetic and transport properties of YBa2Cu3O7-delta in YBa2Cu3O7-delta (YBCO)/La0.7Sr0.3MnO3 (LSMO) bilayers. The temperature dependent dc magnetization study reveals the presence of magnetic anisotropy in YBCO/LSMO bilayer as compared to the pure YBCO layer. The ac susceptibility study on YBCO/LSMO bilayers reveals stronger pinning and the temperature dependent critical current is found to be less prone to temperature. Besides, the current (I) dependent electrical transport studies on YBCO/LSMO exhibit a significant reduction in the superconducting T-c with increase in I and it follows I-2/3 dependence in accord with the pair breaking effect. The higher reduction of superconducting T-c in YBCO/LSMO is believed to be due to the enhanced pair-breaking induced by the spin polarized carriers being injected into the superconductor. (C) 2011 American Institute of Physics. doi: 10.1063/1.3560029]
Resumo:
Synthesis and the thermal decomposition behavior of new molecular precursors, strontium, and calcium zirconyl citrates are presented. The pathway to the metazirconate formation has been found to proceed through a multistep process. The precursors yield SrZrO3 and CaZrO3 fine powders at temperatures as low as 650 degrees C. Physico-chemical, spectroscopic, thermoanalytical, and microscopic techniques have enabled the identification of the sequence of events leading to the perovskite formation and proposition of a thermolysis scheme. Retention of the molecular level mixing of the metal ions during the course of the precursor decomposition is supported by these techniques. Prior to the formation of MZrO3 (M = Sr and Ca) an ionic oxycarbonate, M2Zr2O5CO3 (M = SI. and Ca), intermediate is produced by the thermal decomposition of the citrate precursors.
Resumo:
Ultra low-load-dynamic microhardness testing facilitates the hardness measurements in a very low volume of the material and thus is suited for characterization of the interfaces in MMC's. This paper details the studies on age-hardening behavior of the interfaces in Al-Cu-5SiC(p) composites characterized using this technique. Results of hardness studies have been further substantiated by TEM observations. In the solution-treated condition, hardness is maximum at the particle/matrix interface and decreases with increasing distance from the interface. This could be attributed to the presence of maximum dislocation density at the interface which decreases with increasing distance from the interface. In the case of composites subjected to high temperature aging, hardening at the interface is found to be faster than the bulk matrix and the aging kinetics becomes progressively slower with increasing distance from the interface. This is attributed to the dislocation density gradient at the interface, leading to enhanced nucleation and growth of precipitates at the interface compared to the bulk matrix. TEM observations reveal that the sizes of the precipitates decrease with increasing distance from the interface and thus confirms the retardation in aging kinetics with increasing distance from the interface.
Resumo:
Pyrochlore magnets are candidates for what Harris et al. [Phys. Rev. Lett. 79, 2554 (1997)] call "spin-ice" behavior. We present theoretical simulations of relevance for the pyrochlore family R2Ti2O7 (R = rare earth) supported by magnetothermal measurements on selected systems. Ey considering long-ranged dipole-dipole as well as short-ranged superexchange interactions, we get three distinct behaviors: (i) an ordered doubly degenerate state, (ii) a highly disordered state with a broad transition to paramagnetism, and (iii) a partially ordered state with a sharp transition to paramagnetism. Closely corresponding behavior is seen in the real compounds.
Resumo:
Single phase perovskite 0.9Pb(Mg1/3Nb2/3)O-3-0.1(PbTiO3) ceramics were prepared using the columbite precursor method after optimizing the synthesis conditions. X-ray diffraction (XRD) studies were carried out to verify the phase formation at each processing step. Scanning electron microscopy (SEM) was employed to observe the microstructure of the sintered ceramics. Impedance and modulus spectroscopic data were used to gain an insight into the electrical properties of the samples and with a view to observing the relaxations in them. (C) 1999 Elsevier Science Ltd.
Resumo:
The use of delayed coefficient adaptation in the least mean square (LMS) algorithm has enabled the design of pipelined architectures for real-time transversal adaptive filtering. However, the convergence speed of this delayed LMS (DLMS) algorithm, when compared with that of the standard LMS algorithm, is degraded and worsens with increase in the adaptation delay. Existing pipelined DLMS architectures have large adaptation delay and hence degraded convergence speed. We in this paper, first present a pipelined DLMS architecture with minimal adaptation delay for any given sampling rate. The architecture is synthesized by using a number of function preserving transformations on the signal flow graph representation of the DLMS algorithm. With the use of carry-save arithmetic, the pipelined architecture can support high sampling rates, limited only by the delay of a full adder and a 2-to-1 multiplexer. In the second part of this paper, we extend the synthesis methodology described in the first part, to synthesize pipelined DLMS architectures whose power dissipation meets a specified budget. This low-power architecture exploits the parallelism in the DLMS algorithm to meet the required computational throughput. The architecture exhibits a novel tradeoff between algorithmic performance (convergence speed) and power dissipation. (C) 1999 Elsevier Science B.V. All rights resented.
Resumo:
Recently, Guo and Xia gave sufficient conditions for an STBC to achieve full diversity when a PIC (Partial Interference Cancellation) or a PIC-SIC (PIC with Successive Interference Cancellation) decoder is used at the receiver. In this paper, we give alternative conditions for an STBC to achieve full diversity with PIC and PIC-SIC decoders, which are equivalent to Guo and Xia's conditions, but are much easier to check. Using these conditions, we construct a new class of full diversity PIC-SIC decodable codes, which contain the Toeplitz codes and a family of codes recently proposed by Zhang, Xu et. al. as proper subclasses. With the help of the new criteria, we also show that a class of PIC-SIC decodable codes recently proposed by Zhang, Shi et. al. can be decoded with much lower complexity than what is reported, without compromising on full diversity.
Resumo:
We consider a time division duplex multiple-input multiple-output (nt × nr MIMO). Using channel state information (CSI) at the transmitter, singular value decomposition (SVD) of the channel matrix is performed. This transforms the MIMO channel into parallel subchannels, but has a low overall diversity order. Hence, we propose X-Codes which achieve a higher diversity order by pairing the subchannels, prior to SVD preceding. In particular, each pair of information symbols is encoded by a fixed 2 × 2 real rotation matrix. X-Codes can be decoded using nr very low complexity two-dimensional real sphere decoders. Error probability analysis for X-Codes enables us to choose the optimal pairing and the optimal rotation angle for each pair. Finally, we show that our new scheme outperforms other low complexity precoding schemes.
Resumo:
We report low-frequency 1/f-noise measurements of degenerately doped Si:P delta layers at 4.2 K. The noise was found to be over six orders of magnitude lower than that of bulk Si:P systems in the metallic regime and is one of the lowest values reported for doped semiconductors. The noise was nearly independent of magnetic field at low fields, indicating negligible contribution from universal conductance fluctuations. Instead, the interaction of electrons with very few active structural two-level systems may explain the observed noise magnitude.
Resumo:
Electron Diffraction Structure Analysis (EDSA) with data from standard selected-area electron diffraction (SAED) is still the method of choice for structure determination of nano-sized single crystals. The recently determined heavy atom structure α-Ti2Se (Albe & Weirich, 2003) is used as an example to illustrate the developed procedure for structure determination from two-dimensionally SAED data via direct methods and kinematical least-squares refinement. Despite the investigated crystallite had a relatively large effective thickness of about 230 Å as determined from dynamical calculations, the obtained structural model from SAED data was found in good agreement with the result from an earlier single crystal X-ray study (Weirich, Pöttgen & Simon, 1996). Arguments, which support the validity of the used quasi-kinematical approach, are given in the text. The influences of dynamical and secondary scattering on the quality of the data and the structure solution are discussed. Moreover, the usefulness of first-principles calculations for verifying the results from EDSA is demonstrated by two examples, whereas one of the structures was unattainable by conventional X-ray diffraction.
Resumo:
We have carried out symmetrized density-matrix renormalization-group calculations to study the nature of excited states of long polyacene oligomers within a Pariser-Parr-Pople Hamiltonian. We have used the C-2 symmetry, the electron-hole symmetry, and the spin parity of the system in our calculations. We find that there is a crossover in the lowest dipole forbidden two-photon state and the lowest dipole allowed excited state with size of the oligomer. In the long system limit, the two-photon state lies below the lowest dipole allowed excited state. The triplet state lies well below the two-photon state and energetically does not correspond to its description as being made up of two triplets. These results are in agreement with the general trends in linear conjugated polymers. However, unlike in linear polyenes wherein the two-photon state is a localized excitation, we find that in polyacenes, the two-photon excitation is spread out over the system. We have doped the systems with a hole and an electron and have calculated the charge excitation gap. Using the charge gap and the optical gap, we estimate the binding energy of the 1(1)B(-) exciton to be 2.09 eV. We have also studied doubly doped polyacenes and find that the bipolaron in these systems, to be composed of two separated polarons, as indicated by the calculated charge-density profile and charge-charge correlation function. We have studied bond orders in various states in order to get an idea of the excited state geometry of the system. We find that the ground state, the triplet state, the dipole allowed state, and the polaron excitations correspond to lengthening of the rung bonds in the interior of the oligomer while the two-photon excitation corresponds to the rung bond lengths having two maxima in the system.