968 resultados para Manganese polyphosphate coacervate
Resumo:
Fresh-cut vegetables are a successful convenient healthy food. Nowadays, the presence of new varieties of minimally processed vegetables in the market is common in response to the consumers demand for new flavours and high quality products. Within the most recent fresh-cut products are the aromatic herbs. In this work, the objective was to evaluate the nutritional quality and stability of four fresh-cut aromatic herbs. Several physicochemical quality characteristics (colour, pH, total soluble solids, and total titratable acidity) were monitored in fresh-cut chives, coriander, spearmint and parsley leaves, stored under refrigeration (3 ± 1 ºC) during 10 days. Their nutritional composition was determined, including mineral composition (phosphorous, potassium, sodium, calcium, magnesium, iron, zinc, manganese and copper) and fat- and water-soluble vitamin contents. Total soluble phenolics, flavonoids and the antioxidant capacity were determined by spectrophotometric methods. The aromatic herbs kept their fresh appearance during the storage, maintaining their colour throughout shelf-life. Their macronutrient composition and mineral content were stable during storage. Coriander had the highest mineral and fatsoluble vitamin content, while spearmint showed the best scores in the phenolic, flavonoid and antioxidant capacity assays. Vitamins and antioxidant capacity showed some variation during storage, with a differential behaviour of each compound according to the sample.
Resumo:
Different anthropogenic sources of metals can result from agricultural, industrial, military, mining and urban activities that contribute to environmental pollution. Plants can be grown for phytoremediation to remove or stabilize contaminants in water and soil. Copper (Cu), manganese (Mn) and zinc (Zn) are trace essential metals for plants, although their role in homeostasis in plants must be strictly regulated to avoid toxicity. In this review, we summarize the processes involved in the bioavailability, uptake, transport and storage of Cu, Mn and Zn in plants. The efficiency of phytoremediation depends on several factors including metal bioavailability and plant uptake, translocation and tolerance mechanisms. Soil parameters, such as clay fraction, organic matter content, oxidation state, pH, redox potential, aeration, and the presence of specific organisms, play fundamental roles in the uptake of trace essential metals. Key processes in the metal homeostasis network in plants have been identified. Membrane transporters involved in the acquisition, transport and storage of trace essential metals are reviewed. Recent advances in understanding the biochemical and molecular mechanisms of Cu, Mn and Zn hyperaccumulation are described. The use of plant-bacteria associations, plant-fungi associations and genetic engineering has opened a new range of opportunities to improve the efficiency of phytoremediation. The main directions for future research are proposed from the investigation of published results.
Resumo:
A one-pot template reaction of sodium 2-(2-(dicyanomethylene) hydrazinyl) benzenesulfonate (NaHL1) with water and manganese(II) acetate tetrahydrate led to the mononuclear complex [Mn(H2O)(6)](HL1a)(2)center dot 4H(2)O (1), where (HL1a) -= 2-(SO3-)C6H4(NH)=N=C(C N) (CONH2) is the carboxamide species derived from nucleophilic attack of water on a cyano group of (HL1) . The copper tetramer [Cu-4(H2O)(10)(-) (1 kappa N: kappa O-2: kappa O, 2 kappa N: k(O)-L-2)(2)]center dot 2H(2)O (2) was obtained from reaction of Cu(NO3)(2)center dot 2.5H(2)O with sodium 5-(2( 4,4-dimethyl-2,6-dioxocyclohexylidene) hydrazinyl)-4-hydroxybenzene-1,3-disulfonate (Na2H2L2). Both complexes were characterized by elemental analysis, IR spectroscopy, ESI-MS and single crystal X-ray diffraction. They exhibit a high catalytic activity for the solvent-and additive-free microwave (MW) assisted oxidation of primary and secondary alcohols with tert-butylhydroperoxide, leading to yields of the oxidized products up to 85.5% and TOFs up to 1.90 x 103 h(-1) after 1 h under low power (5-10 W) MW irradiation. Moreover, the heterogeneous catalysts are easily recovered and reused, at least for three consecutive cycles, maintaining 89% of the initial activity and a high selectivity.
Resumo:
The present work reports new sensors for the direct determination of Microcystin-LR (MC-LR) in environmental waters. Both selective membrane and solid contact were optimized to ensure suitable analytical features in potentiometric transduction. The sensing layer consisted of Imprinted Sol–Gel (ISG) materials capable of establishing surface interactions with MC-LR. Non-Imprinted Sol–Gel (NISG) membranes were used as negative control. The effects of an ionic lipophilic additive, time of sol–gel polymerization, time of extraction of MC-LR from the sensitive layer, and pH were also studied. The solid contact was made of carbon, aluminium, titanium, copper or nickel/chromium alloys (80 : 20 or 90 : 10). The best ISG sensor had a carbon solid contact and displayed average slopes of 211.3 mV per decade, with detection limits of 7.3 1010 M, corresponding to 0.75 mg L1 . It showed linear responses in the range of 7.7 1010 to 1.9 109 M of MC-LR (corresponding to 0.77–2.00 mg L1 ), thus including the limiting value for MC-LR in waters (1.0 mg L1 ). The potentiometric-selectivity coefficients were assessed by the matched potential method for ionic species regularly found in waters up to their limiting levels. Chloride (Cl) showed limited interference while aluminium (Al3+), ammonium (NH4 + ), magnesium (Mg2+), manganese (Mn2+), sodium (Na+ ), and sulfate (SO4 2) were unable to cause the required potential change. Spiked solutions were tested with the proposed sensor. The relative errors and standard deviation obtained confirmed the accuracy and precision of the method. It also offered the advantages of low cost, portability, easy operation and suitability for adaptation to flow methods.
Resumo:
Sulfamethoxazole (SMX) is among the antibiotics employed in aquaculture for prophylactic and therapeutic reasons. Environmental and food spread may be prevented by controlling its levels in several stages of fish farming. The present work proposes for this purpose new SMX selective electrodes for the potentiometric determination of this sulphonamide in water. The selective membranes were made of polyvinyl chloride (PVC) with tetraphenylporphyrin manganese (III) chloride or cyclodextrin-based acting as ionophores. 2-nitrophenyl octyl ether was employed as plasticizer and tetraoctylammonium, dimethyldioctadecylammonium bromide or potassium tetrakis (4-chlorophenyl) borate was used as anionic or cationic additive. The best analytical performance was reported for ISEs of tetraphenylporphyrin manganese (III) chloride with 50% mol of potassium tetrakis (4-chlorophenyl) borate compared to ionophore. Nersntian behaviour was observed from 4.0 × 10−5 to 1.0 × 10−2 mol/L (10.0 to 2500 µg/mL), and the limit of detection was 1.2 × 10−5 mol/L (3.0 µg/mL). In general, the electrodes displayed steady potentials in the pH range of 6 to 9. Emf equilibrium was reached before 15 s in all concentration levels. The electrodes revealed good discriminating ability in environmental samples. The analytical application to contaminated waters showed recoveries from 96 to 106%.
Resumo:
Solid-contact sensors for the selective screening of sulfadiazine (SDZ) in aquaculture waters are reported. Sensor surfaces were made from PVC membranes doped with tetraphenylporphyrin-manganese(III) chloride, α-cyclodextrin, β-cyclodextrin, or γ-cyclodextrin ionophores that were dispersed in plasticizer. Some membranes also presented a positive or a negatively charged additive. Phorphyrin-based sensors relied on a charged carrier mechanism. They exhibited a near-Nernstian response with slopes of 52 mV decade−1 and detection limits of 3.91 × 10−5 mol L−1. The addition of cationic lipophilic compounds to the membrane originated Nernstian behaviours, with slopes ranging 59.7–62.0 mV decade−1 and wider linear ranges. Cyclodextrin-based sensors acted as neutral carriers. In general, sensors with positively charged additives showed an improved potentiometric performance when compared to those without additive. Some SDZ selective membranes displayed higher slopes and extended linear concentration ranges with an increasing amount of additive (always <100% ionophore). The sensors were independent from the pH of test solutions within 2–7. The sensors displayed fast response, always <15 s. In general, a good discriminating ability was found in real sample environment. The sensors were successfully applied to the fast screening of SDZ in real waters samples from aquaculture fish farms. The method offered the advantages of simplicity, accuracy, and automation feasibility. The sensing membrane may contribute to the development of small devices allowing in locus measurements of sulfadiazine or parent-drugs.
Resumo:
This work proposes a new biomimetic sensor material for trimethoprim. It is prepared by means of radical polymerization, having trimethylolpropane trimethacrylate as cross-linker, benzoyl peroxide as radicalar iniciator, chloroform as porogenic solvent, and methacrylic acid and 2-vinyl pyridine as monomers. Different percentages of sensor in a range between 1 and 6% were studied. Their behavior was compared to that obtained with ion-exchanger quaternary ammonium salt (additive tetrakis(p-chlorophenyl)borate or tetraphenylborate). The effect of an anionic additive in the sensing membrane was also tested. Trimethoprim sensors with 1% of imprinted particles from methacrylic acid monomers showed the best response in terms of slope (59.7 mV/decade) and detection limit (4.01 × 10− 7 mol/L). These electrodes displayed also a good selectivity towards nickel, manganese aluminium, ammonium, lead, potassium, sodium, iron, chromium, sulfadiazine, alanine, cysteine, tryptophan, valine and glycine. The sensors were not affected by pH changes from 2 to 6. They were successfully applied to the analysis of water from aquaculture.
Resumo:
Espresso coffee beverages prepared from pure origin roasted ground coffees from the major world growing regions (Brazil, Ethiopia, Colombia, India, Mexico, Honduras, Guatemala, Papua New Guinea, Kenya, Cuba, Timor, Mussulo and China) were characterized and compared in terms of their mineral content. Regular consumption of one cup of espresso contributes to a daily mineral intake varying from 0.002% (sodium; Central America) to 8.73% (potassium; Asia). The mineral profiles of the espresso beverages revealed significant inter- and intra-continental differences. South American pure origin coffees are on average richer in the analyzed elements except for calcium, while samples from Central America have generally lower mineral amounts (except for manganese). Manganese displayed significant differences (p < 0.05) among the countries of each characterized continent. Intercontinental and inter-country discrimination between the major world coffee producers were achieved by applying canonical discriminant analysis. Manganese and calcium were found to be the best chemical descriptors for origin.
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Química e Bioquímica
Resumo:
Dissertation to obtain the degree of Master in Chemical and Biochemical Engineering
Resumo:
Enhanced biological phosphorus removal (EBPR) is the most economic and sustainable option used in wastewater treatment plants (WWTPs) for phosphorus removal. In this process it is important to control the competition between polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs), since EBPR deterioration or failure can be related with the proliferation of GAOs over PAOs. This thesis is focused on the effect of operational conditions (volatile fatty acid (VFA) composition, dissolved oxygen (DO) concentration and organic carbon loading) on PAO and GAO metabolism. The knowledge about the effect of these operational conditions on EBPR metabolism is very important, since they represent key factors that impact WWTPs performance and sustainability. Substrate competition between the anaerobic uptake of acetate and propionate (the main VFAs present in WWTPs) was shown in this work to be a relevant factor affecting PAO metabolism, and a metabolic model was developed that successfully describes this effect. Interestingly, the aerobic metabolism of PAOs was not affected by different VFA compositions, since the aerobic kinetic parameters for phosphorus uptake, polyhydroxyalkanoates (PHAs) degradation and glycogen production were relatively independent of acetate or propionate concentration. This is very relevant for WWTPs, since it will simplify the calibration procedure for metabolic models, facilitating their use for full-scale systems. The DO concentration and aerobic hydraulic retention time (HRT) affected the PAO-GAO competition, where low DO levels or lower aerobic HRT was more favourable for PAOs than GAOs. Indeed, the oxygen affinity coefficient was significantly higher for GAOs than PAOs, showing that PAOs were far superior at scavenging for the often limited oxygen levels in WWTPs. The operation of WWTPs with low aeration is of high importance for full-scale systems, since it decreases the energetic costs and can potentially improve WWTP sustainability. Extended periods of low organic carbon load, which are the most common conditions that exist in full-scale WWTPs, also had an impact on PAO and GAO activity. GAOs exhibited a substantially higher biomass decay rate as compared to PAOs under these conditions, which revealed a higher survival capacity for PAOs, representing an advantage for PAOs in EBPR processes. This superior survival capacity of PAOs under conditions more closely resembling a full-scale environment was linked with their ability to maintain a residual level of PHA reserves for longer than GAOs, providing them with an effective energy source for aerobic maintenance processes. Overall, this work shows that each of these key operational conditions play an important role in the PAO-GAO competition and should be considered in WWTP models in order to improve EBPR processes.
Resumo:
In recent years, new methods of clean and environmentally friendly energy production have been the focus of intense research efforts. Microbial fuel cells (MFCs) are devices that utilize naturally occurring microorganisms that feed on organic matter, like waste water, while producing electrical energy. The natural habitats of bacteria thriving in microbial fuel cells are usually marine and freshwater sediments. These microorganisms are called dissimilatory metal reducing bacteria (DMRB), but in addition to metals like iron and manganese, they can use organic compounds like DMSO or TMAO, radionuclides and electrodes as terminal electron acceptors in their metabolic pathways.(...)
Resumo:
The present PhD thesis develops the cell functional enviromics (CFE) method to investigate the relationship between environment and cellular physiology. CFE may be defined as the envirome-wide cellular function reconstruction through the collection and systems-level analysis of dynamic envirome data. Throughout the thesis, CFE is illustrated by two main applications to cultures of a constitutive P. pastoris X33 strain expressing a scFv antibody fragment. The first application addresses the challenge of culture media development. A dataset was built from 26 shake flask experiments, with variations in trace elements concentrations and basal medium dilution based on the standard BSM+PTM1. Protein yield showed high sensitivity to culture medium variations, while biomass was essentially determined by BSM dilution. High scFv yield was associated with high overall metabolic fluxes through central carbon pathways concomitantly with a relative shift of carbon flux from biosynthetic towards energy-generating pathways. CFE identified three cellular functions (growth, energy generation and by-product formation) that together described 98.8% of the variance in observed fluxes. Analyses of how medium factors relate to identified cellular functions showed iron and manganese at concentrations close to PTM1 inhibit overall metabolic activity. The second application addresses bioreactor operation. Pilot 50 L fed-batch cultivations, followed by 1H-NMR exometabolite profiling, allowed the acquisition of data for 21 environmental factors over time. CFE identified five major metabolic pathway groups that are frequently activated by the environment. The resulting functional enviromics map may serve as template for future optimization of media composition and feeding strategies for Pichia pastoris. The present PhD thesis is a step forward towards establishing the foundations of CFE that is still at its infancy. The methods developed herein are a contribution for changing the culture media and process development paradigm towards a holistic and systematic discipline in the future.
Resumo:
Fossils of wood, bone and teeth found along the Upper Purus River οf Amazonia. were studied using conventional microscopy and scanning electron microscopy. Mass spectometry was also used to investigate minor and trace element signatures of bone samples.The microsopy studies showed that there was little alteration of original textures. In the fossil wood samples, identified In thin section as tropical hardwood trees, the replacement of the original material with siderite suggests that fossilization occured in shallow sediments in which interstitial waters were saturated with respect to iron carbenate. In samples of both fossilized bone and wood, precipitation of secondary iron phases was commonly observed in cracks and voids. Other secondary phases Included silica, iron oxides, manganese carbonate. The intimate assοciation οf these secondary phases with the original biological structures could be evidence for a microbiological role in the formation of these phases. The similarity in rare earth element (REE) signatures for 2 fossil bone samples from different modern locations indicates their having shared similar diagenetic histories.The virtually complete preservation of original textures suggests that microscοpic studies could be useful in classifying fossil and even in identifying original materials. Rare carth signatures in fossilized bone may reflect ground water compositions at the time of fossilization.
Resumo:
The role of vitamin C on physiological responses of matrinxã (Brycon amazonicus) submitted to air exposure was analyzed. Nine hundred fish (70.15 g) were distributed in fifteen 500 l boxes (60 fish.box-1) and fed five rations (treatments): Control (no vitamin C); T100 (100 mg); T200 (200 mg); T400 (400 mg) and T800 (800 mg of vitamin C kg.ration-1). Each ration was offered to fish of three boxes during 60 days before the stress challenge that consisted of exposing fish to air for two minutes. Samplings were carried out for 5, 15, 30 and 60 minutes after the air exposure. Blood was collected for glucose, cortisol, total protein, sodium, chloride, hematocrit, hemoglobin determination, and white and red cell count. Liver was removed for hepatosomatic index (HSI) calculation and glycogen determination. Vitamin C did not affect the levels of cortisol, chloride, total protein, hemoglobin, leukocytes, hepatic glycogen or HSI in air exposed fish. Blood glucose levels elevation observed 60 minutes after the challenge did not depend on the levels of vitamin C, nor did the drop in serum sodium levels verified 60 minutes after stressor. In general, hematocrit did not change by effect of vitamin C but it was lower at 15 and 30 minutes after the challenge. The number of erythrocytes decreased in fish after 5 minute sampling in all treatments, especially at 30 and 60 minutes. The air exposure evoked alterations in stress indicators of matrinxã, and the vitamin C did not alter the responses.