950 resultados para MICROGLIA SUPEROXIDE ANION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the present study was to evaluate the effect of Ginkgo biloba treatment (EGb 761, 200 mg kg-1 day-1) administered from day 0 to 20 of pregnancy on maternal reproductive performance and on the maternal and fetal liver antioxidant systems of streptozotocin-induced diabetic Wistar rats. On day 21 of pregnancy, the adult rats (weighing approximately 250 ± 50 g, minimum number = 13/group) were anesthetized to obtain maternal and fetal liver samples for superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and total glutathione (GSH-t) determinations. The uterus was weighed with its contents. The diabetic (G3) and treated diabetic (G4) groups of rats presented significant maternal hyperglycemia, reduced term pregnancy rate, impaired maternal reproductive outcome and fetal-placental development, decreased GSH-Px (G3 = G4 = 0.6 ± 0.2) and SOD (G3 = 223.0 ± 84.7; G4 = 146.1 ± 40.8), and decreased fetal CAT activity (G3 = 22.4 ± 10.6; G4 = 34.4 ± 14.1) and GSH-t (G3 = G4 = 0.3 ± 0.2), compared to the non-diabetic groups (G1, untreated control; G2, treated). For G1, maternal GSH-Px = 0.9 ± 0.2 and SOD = 274.1 ± 80.3; fetal CAT = 92.6 ± 82.7 and GSH-t = 0.6 ± 0.5. For G2, G. biloba treatment caused no toxicity and did not modify maternal or fetal-placental data. EGb 761 at the nontoxic dose used (200 mg kg-1 day-1), failed to modify the diabetes-associated increase in maternal glycemia, decrease in pregnancy rate, decrease in antioxidant enzymes, and impaired fetal development when the rats were treated throughout pregnancy (21 days).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability of the clinically used cephalosporins: cephalothin, cefotaxime and cefotiam to induce lipid peroxidation (LPO) and renal damage was compared to that of nephrotoxic cephaloridine under in vivo conditions. Glutathione was measured in rat liver or in renal cortex as non-protein sulfhydryls. LPO was measured in plasma, renal cortex and liver by the generation of malondialdehyde or as the increase in renal cortical concentration of conjugated dienes. Impairment of renal function was measured as the decrease in renal cortical accumulation of the organic anion p-aminohippurate (PAH). Administration of cephalosporins to rats as a single dose (2000 mg/kg, ip) induced a significant glutathione-depletion in the renal cortex with cephaloridine, and in the liver with cephaloridine, cephalothin and cefotiam. Treatment of rats with cephaloridine, cephalothin and cefotiam (200, 500, or 1000 mg kg-1 day-1, ip) for 5 days resulted in a dose-dependent increase of LPO in the renal cortex. While cephaloridine induced the highest concentration of conjugated diene, cefotaxime had no effect. Measurements of PAH accumulation in renal cortical slices from cephalosporin-treated rats showed a dose-dependent decrease in the renal cortical accumulation of PAH. Pretreatment with the antioxidants vitamin E or cyanidanol (400 mg kg-1 day-1, ip) 1 h before treatment with cephaloridine, cephalothin or cefotiam (1000 mg kg-1 day-1, ip) for 3 days inhibited cephalosporin-induced LPO and significantly reduced the impairment of renal cortical accumulation of PAH. The potential of different cephalosporins for inducing LPO and reducing PAH accumulation was ranked as follows: cephaloridine > cephalothin > cefotiam > cefotaxime.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aims of this study were to determine whether standard base excess (SBE) is a useful diagnostic tool for metabolic acidosis, whether metabolic acidosis is clinically relevant in daily evaluation of critically ill patients, and to identify the most robust acid-base determinants of SBE. Thirty-one critically ill patients were enrolled. Arterial blood samples were drawn at admission and 24 h later. SBE, as calculated by Van Slyke's (SBE VS) or Wooten's (SBE W) equations, accurately diagnosed metabolic acidosis (AUC = 0.867, 95%CI = 0.690-1.043 and AUC = 0.817, 95%CI = 0.634-0.999, respectively). SBE VS was weakly correlated with total SOFA (r = -0.454, P < 0.001) and was similar to SBE W (r = -0.482, P < 0.001). All acid-base variables were categorized as SBE VS <-2 mEq/L or SBE VS <-5 mEq/L. SBE VS <-2 mEq/L was better able to identify strong ion gap acidosis than SBE VS <-5 mEq/L; there were no significant differences regarding other variables. To demonstrate unmeasured anions, anion gap (AG) corrected for albumin (AG A) was superior to AG corrected for albumin and phosphate (AG A+P) when strong ion gap was used as the standard method. Mathematical modeling showed that albumin level, apparent strong ion difference, AG A, and lactate concentration explained SBE VS variations with an R² = 0.954. SBE VS with a cut-off value of <-2 mEq/L was the best tool to diagnose clinically relevant metabolic acidosis. To analyze the components of SBE VS shifts at the bedside, AG A, apparent strong ion difference, albumin level, and lactate concentration are easily measurable variables that best represent the partitioning of acid-base derangements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of N-acetylcysteine, a thiolic antioxidant, on attenuation of phosphamidon-induced oxidative stress and immune dysfunction was evaluated in adult male Wistar rats weighing 200-250 g. Rats were divided into four groups, 8 animals/group, and treated with phosphamidon, N-acetylcysteine or the combination of both for 28 days. Oral administration of phosphamidon (1.74 mg/kg), an organophosphate insecticide, increased serum malondialdehyde (3.83 ± 0.18 vs 2.91 ± 0.24 nmol/mL; P < 0.05) and decreased erythrocyte superoxide dismutase (567.8 ± 24.36 vs 749.16 ± 102.61 U/gHb; P < 0.05), catalase activity (1.86 ± 0.18 vs 2.43 ± 0.08 U/gHb; P < 0.05) and whole blood glutathione levels (1.25 ± 0.21 vs 2.28 ± 0.08 mg/gHb; P < 0.05) showing phosphamidon-induced oxidative stress. Phosphamidon exposure markedly suppressed humoral immune response as assessed by antibody titer to ovalbumin (4.71 ± 0.51 vs 8.00 ± 0.12 -log2; P < 0.05), and cell-mediated immune response as assessed by leukocyte migration inhibition (25.24 ± 1.04 vs 70.8 ± 1.09%; P < 0.05) and macrophage migration inhibition (20.38 ± 0.99 vs 67.16 ± 5.30%; P < 0.05) response. Phosphamidon exposure decreased IFN-у levels (40.7 ± 3.21 vs 55.84 ± 3.02 pg/mL; P < 0.05) suggesting a profound effect of phosphamidon on cell-mediated immune response. A phosphamidon-induced increase in TNF-α level (64.19 ± 6.0 vs 23.16 ± 4.0 pg/mL; P < 0.05) suggests a contributory role of immunocytes in oxidative stress. Co-administration of N-acetylcysteine (3.5 mmol/kg, orally) with phosphamidon attenuated the adverse effects of phosphamidon. These findings suggest that oral N-acetylcysteine treatment exerts protective effect and attenuates free radical injury and immune dysfunction caused by subchronic phosphamidon exposure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to determine the liver oxidative stress status of grey mullets living in heavy-metal-rich polluted Ennore estuary compared with unpolluted Kovalam estuary. Fish were collected from both estuaries during the monsoon and summer seasons from October 2004 to September 2006. Fish liver homogenate (N = 20 per group) was prepared for evaluating oxidative stress parameters. Fish living in the polluted estuary had significantly higher lipid oxidation products, conjugated dienes (0.346 ± 0.017 vs 0.141 ± 0.012 DA233/mg protein), lipid hydroperoxides (0.752 ± 0.032 vs 0.443 ± 0.03 nmol/mg protein), and lipid peroxides (3.447 ± 0.14vs 1.456 ± 0.096 nmol MDA/mg protein) than those of the unpolluted estuary during the summer. In contrast, significantly lower levels of superoxide dismutase (20.39 ± 1.14 vs 53.63 ± 1.48 units/mg protein) and catalase (116 ± 6.87vs 153 ± 8.92 units/mg protein) were detected in the liver of fish from the polluted estuary (Ennore) compared to fish from the unpolluted estuary (Kovalam) during the summer. Variations in most of the oxidative stress parameters were observed between the summer and monsoon seasons, indicating the importance of seasonal variation for estuaries and their inhabitants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitric oxide (NO) influences renal blood flow mainly as a result of neuronal nitric oxide synthase (nNOS). Nevertheless, it is unclear how nNOS expression is modulated by endogenous angiotensin II, an inhibitor of NO function. We tested the hypothesis that the angiotensin II AT1 receptor and oxidative stress mediated by NADPH oxidase contribute to the modulation of renal nNOS expression in two-kidney, one-clip (2K1C) hypertensive rats. Experiments were performed on male Wistar rats (150 to 170 g body weight) divided into 2K1C (N = 19) and sham-operated (N = 19) groups. nNOS expression in kidneys of 2K1C hypertensive rats (N = 9) was compared by Western blotting to that of 2K1C rats treated with low doses of the AT1 antagonist losartan (10 mg·kg-1·day-1; N = 5) or the superoxide scavenger tempol (0.2 mmol·kg-1·day-1; N = 5), which still remain hypertensive. After 28 days, nNOS expression was significantly increased by 1.7-fold in the clipped kidneys of 2K1C rats and by 3-fold in the non-clipped kidneys of 2K1C rats compared with sham rats, but was normalized by losartan. With tempol treatment, nNOS expression increased 2-fold in the clipped kidneys and 1.4-fold in the non-clipped kidneys compared with sham rats. The changes in nNOS expression were not followed by changes in the enzyme activity, as measured indirectly by the cGMP method. In conclusion, AT1 receptors and oxidative stress seem to be primary stimuli for increased nNOS expression, but this up-regulation does not result in higher enzyme activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Currents mediated by calcium-activated chloride channels (CaCCs), observed for the first time in Xenopus oocytes, have been recorded in many cells and tissues ranging from different types of neurons to epithelial and muscle cells. CaCCs play a role in the regulation of excitability in neurons including sensory receptors. In addition, they are crucial mediators of chloride movements in epithelial cells where their activity regulates electrolyte and fluid transport. The roles of CaCCs, particularly in epithelia, are briefly reviewed with emphasis on their function in secretory epithelia. The recent identification by three independent groups, using different strategies, of TMEM16A as the molecular counterpart of the CaCC is discussed. TMEM16A is part of a family that has 10 other members in mice. The discovery of the potential TMEM16 anion channel activity opens the way for the molecular investigation of the role of these anion channels in specific cells and in organ physiology and pathophysiology. The identification of TMEM16A protein as a CaCC chloride channel molecule represents a great triumph of scientific perseverance and ingenuity. The varied approaches used by the three independent research groups also augur well for the solidity of the discovery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(-)-∆9-Tetrahydrocannabinol (∆9-THC), a psychoactive component of marijuana, has been reported to induce oxidative damage in vivo and in vitro. In this study, we administered ∆9-THC to healthy C57BL/6J mice aged 15 weeks in order to determine its effect on hepatic redox state. Mice were divided into 3 groups: ∆9-THC (N = 10), treated with 10 mg/kg body weight ∆9-THC daily; VCtrl (N = 10), treated with vehicle [1:1:18, cremophor EL® (polyoxyl 35 castor oil)/ethanol/saline]; Ctrl (N = 10), treated with saline. Animals were injected ip twice a day with 5 mg/kg body weight for 10 days. Lipid peroxidation, protein carbonylation and DNA oxidation were used as biomarkers of oxidative stress. The endogenous antioxidant defenses analyzed were glutathione (GSH) levels as well as enzyme activities of superoxide dismutase, catalase, glutathione S-transferase, glutathione reductase, and glutathione peroxidase (GPx) in liver homogenates. The levels of mRNA of the cannabinoid receptors CB1 and CB2 were also monitored. Treatment with ∆9-THC did not produce significant changes in oxidative stress markers or in mRNA levels of CB1 and CB2 receptors in the liver of mice, but attenuated the increase in the selenium-dependent GPx activity (Δ9-THC: 8%; VCtrl: 23% increase) and the GSH/oxidized GSH ratio (Δ9-THC: 61%; VCtrl: 96% increase), caused by treatment with the vehicle. Δ9-THC administration did not show any harmful effects on lipid peroxidation, protein carboxylation or DNA oxidation in the healthy liver of mice but attenuated unexpected effects produced by the vehicle containing ethanol/cremophor EL®.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Melatonin regulates the reproductive cycle, energy metabolism and may also act as a potential antioxidant indoleamine. The present study was undertaken to investigate whether long-term melatonin treatment can induce reproductive alterations and if it can protect ovarian tissue against lipid peroxidation during ovulation. Twenty-four adult female Wistar rats, 60 days old (± 250-260 g), were randomly divided into two equal groups. The control group received 0.3 mL 0.9% NaCl + 0.04 mL 95% ethanol as vehicle, and the melatonin-treated group received vehicle + melatonin (100 µg·100 g body weight-1·day-1) both intraperitoneally daily for 60 days. All animals were killed by decapitation during the morning estrus at 4:00 am. Body weight gain and body mass index were reduced by melatonin after 10 days of treatment (P < 0.05). Also, a marked loss of appetite was observed with a fall in food intake, energy intake (melatonin 51.41 ± 1.28 vs control 57.35 ± 1.34 kcal/day) and glucose levels (melatonin 80.3 ± 4.49 vs control 103.5 ± 5.47 mg/dL) towards the end of treatment. Melatonin itself and changes in energy balance promoted reductions in ovarian mass (20.2%) and estrous cycle remained extensive (26.7%), arresting at diestrus. Regarding the oxidative profile, lipid hydroperoxide levels decreased after melatonin treatment (6.9%) and total antioxidant substances were enhanced within the ovaries (23.9%). Additionally, melatonin increased superoxide dismutase (21.3%), catalase (23.6%) and glutathione-reductase (14.8%) activities and the reducing power (10.2% GSH/GSSG ratio). We suggest that melatonin alters ovarian mass and estrous cyclicity and protects the ovaries by increasing superoxide dismutase, catalase and glutathione-reductase activities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Streptococcus mutans is a Gram-positive bacterium present in the oral cavity, and is considered to be one of the leading causes of dental caries. S. mutans has a glnK gene, which codes for a PII-like protein that is possibly involved in the integration of carbon, nitrogen and energy metabolism in several organisms. To characterize the GlnK protein of S. mutans, the glnK gene was amplified by PCR, and cloned into the expression vectors pET29a(+) and pET28b(+). The native GlnK-Sm was purified by anion exchange (Q-Sepharose) and affinity (Hi-Trap Heparin) chromatography. The GlnK-His-Sm protein was purified using a Hi-Trap Chelating-Ni2+ column. The molecular mass of the GlnK-His-Sm proteins was 85 kDa as determined by gel filtration, indicating that this protein is a hexamer in solution. The GlnK-His-Sm protein is not uridylylated by the Escherichia coli GlnD protein. The activities of the GlnK-Sm and GlnK-His-Sm proteins were assayed in E. coli constitutively expressing the Klebsiella pneumoniae nifLA operon. In K. pneumoniae, NifL inhibits NifA activity in the presence of high ammonium levels and the GlnK protein is required to reduce the inhibition of NifL in the presence of low ammonium levels. The GlnK-Sm protein was unable to reduce NifL inhibition of NifA protein. Surprisingly, the GlnK-His-Sm protein was able to partially reduce NifL inhibition of the NifA protein under nitrogen-limiting conditions, in a manner similar to the GlnK protein of E. coli. These results suggested that S. mutans GlnK is functionally different from E. coli PII proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study was to investigate the protective effects of ischemic post-conditioning on damage to the barrier function of the small intestine caused by limb ischemia-reperfusion injury. Male Wistar rats were randomly divided into 3 groups (N = 36 each): sham operated (group S), lower limb ischemia-reperfusion (group LIR), and post-conditioning (group PC). Each group was divided into subgroups (N = 6) according to reperfusion time: immediate (0 h; T1), 1 h (T2), 3 h (T3), 6 h (T4), 12 h (T5), and 24 h (T6). In the PC group, 3 cycles of reperfusion followed by ischemia (each lasting 30 s) were applied immediately. At all reperfusion times (T1-T6), diamine oxidase (DAO), superoxide dismutase (SOD), and myeloperoxidase (MPO) activity, malondialdehyde (MDA) intestinal tissue concentrations, plasma endotoxin concentrations, and serum DAO, tumor necrosis factor-α (TNF-α), and interleukin-10 (IL-10) concentrations were measured in sacrificed rats. Chiu’s pathology scores for small intestinal mucosa were determined under a light microscope and showed that damage to the small intestinal mucosa was lower in group PC than in group LIR. In group PC, tissue DAO and SOD concentrations at T2 to T6, and IL-10 concentrations at T2 to T5 were higher than in group LIR (P < 0.05); however, tissue MPO and MDA concentrations, and serum DAO and plasma endotoxin concentrations at T2 to T6, as well as TNF-α at T2 and T4 decreased significantly (P < 0.05). These results show that ischemic post-conditioning attenuated the permeability of the small intestines after limb ischemia-reperfusion injury. The protective mechanism of ischemic post-conditioning may be related to inhibition of oxygen free radicals and inflammatory cytokines that cause organ damage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silybin, a natural antioxidant, has been traditionally used against a variety of liver ailments. To investigate its effect and the underlying mechanisms of action on non-alcoholic fatty liver in rats, we used 60 4-6-week-old male Sprague-Dawley rats to establish fatty liver models by feeding a high-fat diet for 6 weeks. Hepatic enzyme, serum lipid levels, oxidative production, mitochondrial membrane fluidity, homeostasis model assessment-insulin resistance index (HOMA-IR), gene and protein expression of adiponectin, and resistin were evaluated by biochemical, reverse transcription polymerase chain reaction (RT-PCR) and Western blot analysis. Compared with the model group, silybin treatment (26.25 mg·kg-1·day-1, started at the beginning of the protocol) significantly protected against high-fat-induced fatty liver by stabilizing mitochondrial membrane fluidity, reducing serum content of alanine aminotransferase (ALT) from 450 to 304 U/L, decreasing hepatic malondialdehyde (MDA) from 1.24 to 0.93 nmol/mg protein, but increasing superoxide dismutase (SOD) and glutathione (GSH) levels from 8.03 to 9.31 U/mg protein and from 3.65 to 4.52 nmol/mg protein, respectively. Moreover, silybin enhanced the gene and protein expression of adiponectin from 215.95 to 552.40, but inhibited that of resistin from 0.118 to 0.018. Compared to rosiglitazone (0.5 mg·kg-1·day-1, started at the beginning of the protocol), silybin was effective in stabilizing mitochondrial membrane fluidity, reducing SOD as well as ALT, and regulating gene and protein expression of adiponectin (P < 0.05). These results suggest that mitochondrial membrane stabilization, oxidative stress inhibition, as well as improved insulin resistance, may be the essential mechanisms for the hepatoprotective effect of silybin on non-alcoholic fatty liver disease in rats. Silybin was more effective than rosiglitazone in terms of maintaining mitochondrial membrane fluidity and reducing oxidative stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The health-promoting effects of exercise training (ET) are related to nitric oxide (NO) production and/or its bioavailability. The objective of this study was to determine whether single nucleotide polymorphism of the endothelial NO synthase (eNOS) gene at positions -786T>C, G894T (Glu298Asp) and at the variable number of tandem repeat (VNTR) Intron 4b/a would interfere with the cardiometabolic responses of postmenopausal women submitted to physical training. Forty-nine postmenopausal women were trained in sessions of 30-40 min, 3 days a week for 8 weeks. Genotypes, oxidative stress status and cardiometabolic parameters were then evaluated in a double-blind design. Both systolic and diastolic blood pressure values were significantly reduced after ET, which was genotype-independent. However, women without eNOS gene polymorphism at position -786T>C (TT genotype) and Intron 4b/a (bb genotype) presented a better reduction of total cholesterol levels (-786T>C: before = 213 ± 12.1, after = 159.8 ± 14.4, Δ = -24.9% and Intron 4b/a: before = 211.8 ± 7.4, after = 180.12 ± 6.4 mg/dL, Δ = -15%), and LDL cholesterol (-786T>C: before = 146.1 ± 13.3, after = 82.8 ± 9.2, Δ = -43.3% and Intron 4b/a: before = 143.2 ± 8, after = 102.7 ± 5.8 mg/dL, Δ = -28.3%) in response to ET compared to those who carried the mutant allele. Superoxide dismutase activity was significantly increased in trained women whereas no changes were observed in malondialdehyde levels. Women without eNOS gene polymorphism at position -786T>C and Intron 4b/a showed a greater reduction of plasma cholesterol levels in response to ET. Furthermore, no genotype influence was observed on arterial blood pressure or oxidative stress status in this population.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neurogenic hypertension has been the subject of extensive research worldwide. This review is based on the premise that some forms of neurogenic hypertension are caused in part by the formation of angiotensin-II (Ang-II)-induced reactive oxygen species along the subfornical organ-paraventricular nucleus of the hypothalamus-rostral ventrolateral medulla pathway (SFO-PVN-RVLM pathway). We will discuss the recent contribution of our laboratory and others regarding the mechanisms by which neurons in the SFO (an important circumventricular organ) are activated by Ang-II, how the SFO communicates with two other important areas involved in sympathetic activity regulation (PVN and RVLM) and how Ang-II-induced reactive oxygen species participate along the SFO-PVN-RVLM pathway in the pathogenesis of neurogenic hypertension.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to evaluate the effect of short-term levosimendan exposure on oxidant/antioxidant status and trace element levels in the testes of rats under physiological conditions. Twenty male Wistar albino rats were randomly divided into two groups of 10 animals each. Group 1 was not exposed to levosimendan and served as control. Levosimendan (12 µg/kg) diluted in 10 mL 0.9% NaCl was administered intraperitoneally to group 2. Animals of both groups were sacrificed after 3 days and their testes were harvested for the determination of changes in tissue oxidant/antioxidant status and trace element levels. Tissue malondialdehyde (MDA) was significantly lower in the levosimendan group (P < 0.001) than in the untreated control group and superoxide dismutase and glutathione peroxidase (GSH-Px) levels were significantly higher in the levosimendan group (P < 0.001). Carbonic anhydrase, catalase and GSH levels were not significantly different from controls. Mg and Zn levels of testes were significantly higher (P < 0.001) and Co, Pb, Cd, Mn, and Cu were significantly lower (P < 0.001) in group 2 compared to group 1. Fe levels were similar for the two groups (P = 0.94). These results suggest that 3-day exposure to levosimendan induced a significant decrease in tissue MDA level, which is a lipid peroxidation product and an indicator of oxidative stress, and a significant increase in the activity of an important number of the enzymes that protect against oxidative stress in rat testes.