991 resultados para MEMS vibration energy harvesters
Resumo:
BACKGROUND/AIM: We have reported that neonatal treatment with monosodium L-glutamate (MSG), which causes damage to the arcuate nucleus, leads to severe hyperleptinemia and reduced adrenal leptin receptor (ob-Rb) expression in adulthood. As a result, rats given MSG neonatally display corticoadrenal leptin-resistance, a defect that is overridden by normalization of corticoadrenal hyperfunction. The aim of the present study was to determine whether negative energy conditions could correct corticoadrenal cell dysfunction in rats given MSG neonatally. METHODS: Normal (CTR) and MSG-treated female rats were subjected to food removal for 1-5 days, or prolonged (24-61 days) food restriction (FR). Plasma levels of several biomarkers and in vitro corticoadrenal function were evaluated following starvation or FR. RESULTS: Fasting for 1-5 days reduced plasma leptin levels in CTR and MSG rats, compared to levels in the respective groups fed ad libitum(p < 0.05), but adrenal leptin-resistance was unchanged. With prolonged FR, isolated adrenal cells from MSG rats became sensitive to leptin, which lowered ACTH-induced glucocorticoid release. This restoration of leptin response was associated with normalization of adrenal ob-Rb gene expression. CONCLUSION: Dietary restriction in some leptin-resistant obese phenotypes may normalize adrenocortical function.
Resumo:
This paper addresses the surprising lack of quality control on the analysis and selection on energy policies observable in the last decades. As an example, we discuss the delusional idea that it is possible to replace fossil energy with large scale ethanol production from agricultural crops. But if large scale ethanol production is not practical in energetic terms, why huge amount of money has been invested in it and is it still being invested? In order to answer this question we introduce two concepts useful to frame, in general terms, the predicament of quality control in science: (i) the concept of “granfalloons” proposed by K. Vonnegut (1963) flagging the danger of the formation of “crusades to save the world” void of real meaning. These granfalloons are often used by powerful lobbies to distort policy decisions; and (ii) the concept of Post-Normal science by S. Funtowicz and J. Ravetz (1990) indicating a standard predicament faced by science when producing information for governance. When mixing together uncertainty, multiple-scale and legitimate but contrasting views it becomes impossible to deal with complex issue using the conventional scientific approach based on reductionism. We finally discuss the implications of a different approach to the assessment of alternative energy sources by introducing the concept of Promethean technology.
Resumo:
We studied the variations caused by stress in lipoprotein lipase (LPL) activity, LPL-mRNA, and local blood flow in LPL-rich tissues in the rat. Stress was produced by body immobilization (Immo): the rat's limbs were taped to metal mounts, and its head was placed in a plastic tube. Chronic stress (2 h daily of Immo) decreased total LPL activity in mesenteric and epididymal white adipose tissue (WAT) and was accompanied by a weight reduction of these tissues. In limb muscle, heart, and adrenals, total LPL activity and mRNA levels increased, and, in plasma, LPL activity and mass also increased. Acute stress (30-min Immo) caused a decrease in total LPL activity only in retroperitoneal WAT and an increase in preheparin plasma active LPL, but the overall weight of this tissue did not vary significantly. We propose an early release of the enzyme from this tissue into the bloodstream by some unknown extracellular pathways or other local mechanisms. These changes in this key energy-regulating enzyme are probably induced by catecholamines. They modify the flow of energy substrates between tissues, switching the WAT from importer to exporter of free fatty acids and favoring the uptake by muscle of circulating triacylglycerides for energy supply. Moreover, we found that acute stress almost doubled blood flow in all WAT studied, favoring the export of free fatty acids.
Resumo:
The objective of this work was to evaluate the reliability of eddy covariance measurements, analyzing the energy balance components, evapotranspiration and energy balance closure in dry and wet growing seasons, in a banana orchard. The experiment was carried out at a farm located within the irrigation district of Quixeré, in the Lower Jaguaribe basin, in Ceará state, Brazil. An eddy covariance system was used to measure the turbulent flux. An automatic weather station was installed in a grass field to obtain the reference evapotranspiration (ET0) from the combined FAO-Penman-Monteith method. Wind speed and vapor pressure deficit are the most important variables on the evaporative process in both growing seasons. In the dry season, the heat fluxes have a similar order of magnitude, and during the wet season the latent heat flux is the largest. The eddy covariance system had acceptable reliability in measuring heat flux, with actual evapotranspiration results comparing well with those obtained by using the water balance method. The energy balance closure had good results for the study area, with mean values of 0.93 and 0.86 for the dry and wet growing seasons respectively.
Resumo:
The objective of this work was to determine the proper levels of protein and energy in diets of Hoplias lacerdae fingerlings. The dietary crude protein (CP) and gross energy (GE) levels for fingerlings of giant trahira were evaluated in a completely randomized 4x3 factorial design with 35, 39, 43 and 47% CP and 4,100, 4,300 and 4,500 kcal kg-1 of GE, and four replicates. The survival rate was 99.22%, and a linear improvement on the performance parameters was detected after increasing diet crude protein levels. Feed conversion ratio decreased with increasing levels of dietary protein and energy in the diets. A significant interaction between crude protein and gross energy was observed over body protein and mineral matter. Body lipid has increased linearly as gross energy in the diet increased. The retention of crude protein and energy showed a linear increasing with rising of crude protein levels in the diet. Crude protein level at 47% provides the best performance and energy retention, independently of the gross energy levels in the diet.
Resumo:
Through the City Energy Management Program, energy managers will directly work with up to 20 municipalities in Iowa to help identify opportunities to reduce energy costs in city-owned buildings, exterior lighting, and water/wastewater facilities. This assistance will be provided to the selected municipalities who will provide an in-kind match to achieve energy efficiency within their community.
Resumo:
Through the City Energy Management Program, energy managers will directly work with up to 20 municipalities in Iowa to help identify opportunities to reduce energy costs in city-owned buildings, exterior lighting, and water/wastewater facilities. This assistance will be provided to the selected municipalities who will provide an in-kind match to achieve energy efficiency within their community. Power Point of theses resources.
Resumo:
The Iowa Economic Development Authority (IEDA) Energy Office sets energy policy direction for Iowa and receives designated funding from the State Energy Program Formula from the Department of Energy to carry out designated energy activities. These activities include promoting energy efficiency, biofuels and renewable energy.
Resumo:
The Iowa Economic Development Authority (IEDA) Energy Office sets energy policy direction for Iowa and receives designated funding from the State Energy Program Formula from the Department of Energy to carry out designated energy activities. These activities include promoting energy efficiency, bio-fuels and renewable energy.
Resumo:
Recognition by the T-cell receptor (TCR) of immunogenic peptides presented by class I major histocompatibility complexes (MHCs) is the determining event in the specific cellular immune response against virus-infected cells or tumor cells. It is of great interest, therefore, to elucidate the molecular principles upon which the selectivity of a TCR is based. These principles can in turn be used to design therapeutic approaches, such as peptide-based immunotherapies of cancer. In this study, free energy simulation methods are used to analyze the binding free energy difference of a particular TCR (A6) for a wild-type peptide (Tax) and a mutant peptide (Tax P6A), both presented in HLA A2. The computed free energy difference is 2.9 kcal/mol, in good agreement with the experimental value. This makes possible the use of the simulation results for obtaining an understanding of the origin of the free energy difference which was not available from the experimental results. A free energy component analysis makes possible the decomposition of the free energy difference between the binding of the wild-type and mutant peptide into its components. Of particular interest is the fact that better solvation of the mutant peptide when bound to the MHC molecule is an important contribution to the greater affinity of the TCR for the latter. The results make possible identification of the residues of the TCR which are important for the selectivity. This provides an understanding of the molecular principles that govern the recognition. The possibility of using free energy simulations in designing peptide derivatives for cancer immunotherapy is briefly discussed.
Resumo:
In order to explore the magnitude and duration of the long-term residual effect of physical exercise, a mixed meal (55% CHO, 27% fat and 18% protein) was given to 10 young male volunteers on two occasions: after a 4-h resting period, and on the next day, 30 min after completion of a 3-h exercise at 50% VO2max. Energy expenditure and substrate utilization were determined by indirect calorimetry for 17 h after meal ingestion. The fuel mix oxidized after the meal was characterized by a greater contribution of lipid oxidation to total energy expenditure when the meal was ingested during the post-exercise period as compared with the meal ingested without previous exercise. During the night following the exercise, the stimulation of energy expenditure observed during the early recovery period gradually faded out. However, resting energy expenditure measured the next morning was significantly higher (+4.7%) than that measured without previous exercise. It is concluded that intense exercise stimulates both energy expenditure and lipid oxidation for a prolonged period.
Resumo:
Hsp70-Hsp40-NEF and possibly Hsp100 are the only known molecular chaperones that can use the energy of ATP to convert stably pre-aggregated polypeptides into natively refolded proteins. However, the kinetic parameters and ATP costs have remained elusive because refolding reactions have only been successful with a molar excess of chaperones over their polypeptide substrates. Here we describe a stable, misfolded luciferase species that can be efficiently renatured by substoichiometric amounts of bacterial Hsp70-Hsp40-NEF. The reactivation rates increased with substrate concentration and followed saturation kinetics, thus allowing the determination of apparent V(max)' and K(m)' values for a chaperone-mediated renaturation reaction for the first time. Under the in vitro conditions used, one Hsp70 molecule consumed five ATPs to effectively unfold a single misfolded protein into an intermediate that, upon chaperone dissociation, spontaneously refolded to the native state, a process with an ATP cost a thousand times lower than expected for protein degradation and resynthesis.
Resumo:
Energy demand is an important constraint on neural signaling. Several methods have been proposed to assess the energy budget of the brain based on a bottom-up approach in which the energy demand of individual biophysical processes are first estimated independently and then summed up to compute the brain's total energy budget. Here, we address this question using a novel approach that makes use of published datasets that reported average cerebral glucose and oxygen utilization in humans and rodents during different activation states. Our approach allows us (1) to decipher neuron-glia compartmentalization in energy metabolism and (2) to compute a precise state-dependent energy budget for the brain. Under the assumption that the fraction of energy used for signaling is proportional to the cycling of neurotransmitters, we find that in the activated state, most of the energy ( approximately 80%) is oxidatively produced and consumed by neurons to support neuron-to-neuron signaling. Glial cells, while only contributing for a small fraction to energy production ( approximately 6%), actually take up a significant fraction of glucose (50% or more) from the blood and provide neurons with glucose-derived energy substrates. Our results suggest that glycolysis occurs for a significant part in astrocytes whereas most of the oxygen is utilized in neurons. As a consequence, a transfer of glucose-derived metabolites from glial cells to neurons has to take place. Furthermore, we find that the amplitude of this transfer is correlated to (1) the activity level of the brain; the larger the activity, the more metabolites are shuttled from glia to neurons and (2) the oxidative activity in astrocytes; with higher glial pyruvate metabolism, less metabolites are shuttled from glia to neurons. While some of the details of a bottom-up biophysical approach have to be simplified, our method allows for a straightforward assessment of the brain's energy budget from macroscopic measurements with minimal underlying assumptions.