991 resultados para MEDIATED DAMAGE
Resumo:
Eukaryotic cells respond to DNA breaks, especially double-stranded breaks (DSBs), by activating the DNA damage response (DDR), which encompasses DNA repair and cell cycle checkpoint signaling. The DNA damage signal is transmitted to the checkpoint machinery by a network of specialized DNA damage-recognizing and signal-transducing molecules. However, recent evidence suggests that DNA repair proteins themselves may also directly contribute to the checkpoint control. Here, we investigated the role of homologous recombination (HR) proteins in normal cell cycle regulation in the absence of exogenous DNA damage. For this purpose, we used Chinese Hamster Ovary (CHO) cells expressing the Fluorescent ubiquitination-based cell cycle indicators (Fucci). Systematic siRNA-mediated knockdown of HR genes in these cells demonstrated that the lack of several of these factors alters cell cycle distribution, albeit differentially. The knock-down of MDC1, Rad51 and Brca1 caused the cells to arrest in the G2 phase, suggesting that they may be required for the G2/M transition. In contrast, inhibition of the other HR factors, including several Rad51 paralogs and Rad50, led to the arrest in the G1/G0 phase. Moreover, reduced expression of Rad51B, Rad51C, CtIP and Rad50 induced entry into a quiescent G0-like phase. In conclusion, the lack of many HR factors may lead to cell cycle checkpoint activation, even in the absence of exogenous DNA damage, indicating that these proteins may play an essential role both in DNA repair and checkpoint signaling.
Resumo:
Store-operated Ca(2+) channels (SOCs) are voltage-independent Ca(2+) channels activated upon depletion of the endoplasmic reticulum Ca(2+) stores. Early studies suggest the contribution of such channels to Ca(2+) homeostasis in insulin-secreting pancreatic β-cells. However, their composition and contribution to glucose-stimulated insulin secretion (GSIS) remains unclear. In this study, endoplasmic reticulum Ca(2+) depletion triggered by acetylcholine (ACh) or thapsigargin stimulated the formation of a ternary complex composed of Orai1, TRPC1, and STIM1, the key proteins involved in the formation of SOCs. Ca(2+) imaging further revealed that Orai1 and TRPC1 are required to form functional SOCs and that these channels are activated by STIM1 in response to thapsigargin or ACh. Pharmacological SOCs inhibition or dominant negative blockade of Orai1 or TRPC1 using the specific pore mutants Orai1-E106D and TRPC1-F562A impaired GSIS in rat β-cells and fully blocked the potentiating effect of ACh on secretion. In contrast, pharmacological or dominant negative blockade of TRPC3 had no effect on extracellular Ca(2+) entry and GSIS. Finally, we observed that prolonged exposure to supraphysiological glucose concentration impaired SOCs function without altering the expression levels of STIM1, Orai1, and TRPC1. We conclude that Orai1 and TRPC1, which form SOCs regulated by STIM1, play a key role in the effect of ACh on GSIS, a process that may be impaired in type 2 diabetes.
Resumo:
The tumor suppressor gene product p53 plays an important role in the cellular response to DNA damage from exogenous chemical and physical mutagens. Therefore, we hypothesized that p53 performs a similar role in response to putative endogenous mutagens, such as nitric oxide (NO). We report here that exposure of human cells to NO generated from an NO donor or from overexpression of inducible nitric oxide synthase (NOS2) results in p53 protein accumulation. In addition, expression of wild-type (WT) p53 in a variety of human tumor cell lines, as well as murine fibroblasts, results in down-regulation of NOS2 expression through inhibition of the NOS2 promoter. These data are consistent with the hypothesis of a negative feedback loop in which endogenous NO-induced DNA damage results in WT p53 accumulation and provides a novel mechanism by which p53 safeguards against DNA damage through p53-mediated transrepression of NOS2 gene expression, thus reducing the potential for NO-induced DNA damage.
Resumo:
The amygdala nuclei appear to be critically implicated in emotional memory. However, in most studies, encoding and consolidation processes cannot be analyzed separately. We thus studied the verbal emotional memory in a young woman with a ganglioglioma of the left amygdala and analyzed its impact (1) on each step of the memory process (encoding, retrieval, and recognition) (2) on short- and long-term consolidation (1-hour and 1-week delay) and (3) on processing of valence (positive and negative items compared to neutral words). Results showed emotional encoding impairments and, after encoding was controlled for, emotional long-term consolidation. Finally, although the negative words were not acknowledged as emotionally arousing by the patient, these words were specifically poorly encoded, recalled, and consolidated. Our data suggest that separate cerebral networks support the processing of emotional versus neutral stimuli.
Resumo:
Background: Huntington's disease (HD) is an inherited neurodegenerative disorder triggered by an expanded polyglutamine tract in huntingtin that is thought to confer a new conformational property on this large protein. The propensity of small amino-terminal fragments with mutant, but not wild-type, glutamine tracts to self-aggregate is consistent with an altered conformation but such fragments occur relatively late in the disease process in human patients and mouse models expressing full-length mutant protein. This suggests that the altered conformational property may act within the full-length mutant huntingtin to initially trigger pathogenesis. Indeed, genotypephenotype studies in HD have defined genetic criteria for the disease initiating mechanism, and these are all fulfilled by phenotypes associated with expression of full-length mutant huntingtin, but not amino-terminal fragment, in mouse models. As the in vitro aggregation of amino-terminal mutant huntingtin fragment offers a ready assay to identify small compounds that interfere with the conformation of the polyglutamine tract, we have identified a number of aggregation inhibitors, and tested whether these are also capable of reversing a phenotype caused by endogenous expressionof mutant huntingtin in a striatal cell line from the HdhQ111/Q111 knock-in mouse. Results: We screened the NINDS Custom Collection of 1,040 FDA approved drugs and bioactive compounds for their ability to prevent in vitro aggregation of Q58-htn 1¿171 amino terminal fragment. Ten compounds were identified that inhibited aggregation with IC50 < 15 ¿M, including gossypol, gambogic acid, juglone, celastrol, sanguinarine and anthralin. Of these, both juglone and celastrol were effective in reversing the abnormal cellular localization of full-length mutant huntingtin observed in mutant HdhQ111/Q111 striatal cells. Conclusions: At least some compounds identified as aggregation inhibitors also prevent a neuronal cellular phenotype caused by full-length mutant huntingtin, suggesting that in vitro fragment aggregation can act as a proxy for monitoring the disease-producing conformational property in HD. Thus, identification and testing of compounds that alter in vitro aggregation is a viable approach for defining potential therapeutic compounds that may act on the deleterious conformational property of full-length mutant huntingtin.
Resumo:
Brain damage caused by an acute injury depends on the initial severity of the injury and the time elapsed after the injury. To determine whether these two variables activate common mechanisms, we compared the response of the rat medial septum to insult with a graded series of concentrations of a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) with the time-course effects of a low dose of AMPA. For this purpose we conducted a dose-response study at concentrations of AMPA between 0.27 and 10.8 nmol to measure atrophy of the septal area, losses of cholinergic and GABAergic neurons, astroglial and microglial reactions, and calcification. Cholinergic neurons, whose loss paralleled the degree of septal atrophy produced by AMPA, are more sensitive than GABAergic neurons to the injury produced by AMPA. At doses of AMPA above 2.7 nmol, calcification and the degree of microglial reaction increased only in the GABAergic region of the septal area, whereas atrophy and neuronal loss reached a plateau. We chose the 2.7-nmol dose of AMPA to determine how these parameters were modified between 4 days and 6 months after injection. We found that atrophy and neuronal loss increased progressively through the 6-month study period, whereas astrogliosis ceased to be observed after 1 month, and calcium precipitates were never detected. We conclude that septal damage does not increase with the intensity of an excitotoxic insult. Rather, it progresses continuously after the insult. Because these two situations involve different mechanisms, short-term paradigms are inappropriate for interpreting the pathogenic mechanisms responsible for long-term neurodegenerative processes.
Resumo:
Apoptosis is an essential cellular mechanism involved in many processes such as embryogenesis, metamorphosis, and tissue homeostasis. DNA fragmentation is one of the key markers of this form of cell death. DNA fragmentation is executed by endogenous endonucleases such as caspase-activated DNase (CAD) in caspase-dependent apoptosis. The TUNEL (TdT-mediated dUTP-biotin nick end labeling) technique is the most widely used method to identify apoptotic cells in a tissue or culture and to assess drug toxicity. It is based on the detection of 3'-OH termini that are labeled with dUTP by the terminal deoxynucleotidyl transferase. Although the test is very reliable and sensitive in caspase-dependent apoptosis, it is completely useless when cell death is mediated by pathways involving DNA degradation that generates 3'-P ends as in the LEI/L-DNase II pathway. Here, we propose a modification in the TUNEL protocol consisting of a dephosphorylation step prior to the TUNEL labeling. This allows the detection of both types of DNA breaks induced during apoptosis caspase-dependent and independent pathways, avoiding underestimating the cell death induced by the treatment of interest.
Resumo:
Spectra of "white LEDs" are characterized by an intense emission in the blue region of the visible spectrum, absent in daylight spectra. This blue component and the high intensity of emission are the main sources of concern about the health risks of LEDs with respect to their toxicity to the eye and the retina. The aim of our study was to elucidate the role of blue light from LEDs in retinal damage. Commercially available white LEDs and four different blue LEDs (507, 473, 467, and 449nm) were used for exposure experiments on Wistar rats. Immunohistochemical stain, transmission electron microscopy, and Western blot were used to exam the retinas. We evaluated LED-induced retinal cell damage by studying oxidative stress, stress response pathways, and the identification of cell death pathways. LED light caused a state of suffering of the retina with oxidative damage and retinal injury. We observed a loss of photoreceptors and the activation of caspase-independent apoptosis, necroptosis, and necrosis. A wavelength dependence of the effects was observed. Phototoxicity of LEDs on the retina is characterized by a strong damage of photoreceptors and by the induction of necrosis.
Resumo:
Iron is essential for retinal function but contributes to oxidative stress-mediated degeneration. Iron retinal homeostasis is highly regulated and transferrin (Tf), a potent iron chelator, is endogenously secreted by retinal cells. In this study, therapeutic potential of a local Tf delivery was evaluated in animal models of retinal degeneration. After intravitreal injection, Tf spread rapidly within the retina and accumulated in photoreceptors and retinal pigment epithelium, before reaching the blood circulation. Tf injected in the vitreous prior and, to a lesser extent, after light-induced retinal degeneration, efficiently protected the retina histology and function. We found an association between Tf treatment and the modulation of iron homeostasis resulting in a decrease of iron content and oxidative stress marker. The immunomodulation function of Tf could be seen through a reduction in macrophage/microglial activation as well as modulated inflammation responses. In a mouse model of hemochromatosis, Tf had the capacity to clear abnormal iron accumulation from retinas. And in the slow P23H rat model of retinal degeneration, a sustained release of Tf in the vitreous via non-viral gene therapy efficently slowed-down the photoreceptors death and preserved their function. These results clearly demonstrate the synergistic neuroprotective roles of Tf against retinal degeneration and allow identify Tf as an innovative and not toxic therapy for retinal diseases associated with oxidative stress.
Resumo:
Mutations of the Wiskott-Aldrich syndrome gene (WAS) are responsible for Wiskott-Aldrich syndrome (WAS), a disease characterized by thrombocytopenia, eczema, immunodeficiency, and autoimmunity. Mice with conditional deficiency of Was in B lymphocytes (B/WcKO) have revealed a critical role for WAS protein (WASP) expression in B lymphocytes in the maintenance of immune homeostasis. Neural WASP (N-WASP) is a broadly expressed homolog of WASP, and regulates B-cell signaling by modulating B-cell receptor (BCR) clustering and internalization. We have generated a double conditional mouse lacking both WASP and N-WASP selectively in B lymphocytes (B/DcKO). Compared with B/WcKO mice, B/DcKO mice showed defective B-lymphocyte proliferation and impaired antibody responses to T-cell-dependent antigens, associated with decreased autoantibody production and lack of autoimmune kidney disease. These results demonstrate that N-WASP expression in B lymphocytes is required for the development of autoimmunity of WAS and may represent a novel therapeutic target in WAS.
Resumo:
Distinct molecular mechanisms integrate changes in ambient temperature into the genetic pathways that govern flowering time in Arabidopsis thaliana. Temperature-dependent eviction of the histone variant H2A.Z from nucleosomes has been suggested to facilitate the expression of FT by PIF4 at elevated ambient temperatures. Here we show that, in addition to PIF4, PIF3 and PIF5, but not PIF1 and PIF6, can promote flowering when expressed specifically in phloem companion cells (PCC), where they can induce FT and its close paralog, TSF. However, despite their strong potential to promote flowering, genetic analyses suggest that the PIF genes seem to have only a minor role in adjusting flowering in response to photoperiod or high ambient temperature. In addition, loss of PIF function only partially suppressed the early flowering phenotype and FT expression of the arp6 mutant, which is defective in H2A.Z deposition. In contrast, the chemical inhibition of gibberellic acid (GA) biosynthesis resulted in a strong attenuation of early flowering and FT expression in arp6. Furthermore, GA was able to induce flowering at low temperature (15°C) independently of FT, TSF, and the PIF genes, probably directly at the shoot apical meristem. Together, our results suggest that the timing of the floral transition in response to ambient temperature is more complex than previously thought and that GA signaling might play a crucial role in this process.
Resumo:
Renal disorders are an emerging problem in HIV-infected patients. We performed a cross-sectional study of the first 1000 HIV-infected patients attended at our HIV unit who agreed to participate. We determined the frequency of renal alterations and its related risk factors. Summary statistics and logistic regression were applied. The study sample comprised 970 patients with complete data. Most were white (94%) and men (76%). Median (IQR) age was 48 (42–53) years. Hypertension was diagnosed in 19%, dyslipidemia in 27%, and diabetes mellitus in 3%. According to the Chronic Kidney Disease Epidemiology Collaboration (CKD EPI) equation, 29 patients (3%) had an eGFR < 60 ml/min/1.73m2; 18 of them (62%) presented altered albumin/creatinine and protein/creatinine (UPC or UAC) ratios. Of the patients with eGFR> 60mL/min, it was present in 293 (30%), 38 of whom (7.1%) had UPC> 300mg/g. Increased risk of renal abnormalities was correlated with hypertension (OR, 1.821 [95%CI, 1.292;2.564]; p = 0.001), age (OR, 1.015 [95%CI, 1.001;1.030], per one year; p = 0.040), and use of tenofovir disoproxil fumarate (TDF) plus protease inhibitor (PI), (OR, 1.401 [95%CI, 1.078;1.821]; p = 0.012). Current CD4 cell count was a protective factor (OR, 0.9995 [95%CI, 0.9991;0.9999], per one cell; p = 0.035). A considerable proportion of patients presented altered UPC or UAC ratios, despite having an eGFR > 60mL/min. CD4 cell count was a protective factor; age, hypertension, and use of TDF plus PIs were risk factors for renal abnormalities. Based on our results, screen of renal abnormalities should be considered in all HIV-infected patients to detect these alterations early.
Resumo:
NLRC5 is a transcriptional regulator of MHC class I (MHCI), which maintains high MHCI expression particularly in T cells. Recent evidence highlights an important NK-T-cell crosstalk, raising the question on whether NLRC5 specifically modulates this interaction. Here we show that NK cells from Nlrc5-deficient mice exhibit moderate alterations in inhibitory receptor expression and responsiveness. Interestingly, NLRC5 expression in T cells is required to protect them from NK-cell-mediated elimination upon inflammation. Using T-cell-specific Nlrc5-deficient mice, we show that NK cells surprisingly break tolerance even towards 'self' Nlrc5-deficient T cells under inflammatory conditions. Furthermore, during chronic LCMV infection, the total CD8(+) T-cell population is severely decreased in these mice, a phenotype reverted by NK-cell depletion. These findings strongly suggest that endogenous T cells with low MHCI expression become NK-cell targets, having thus important implications for T-cell responses in naturally or therapeutically induced inflammatory conditions.
Resumo:
In humans, action errors and perceptual novelty elicit activity in a shared frontostriatal brain network, allowing them to adapt their ongoing behavior to such unexpected action outcomes. Healthy and pathologic aging reduces the integrity of white matter pathways that connect individual hubs of such networks and can impair the associated cognitive functions. Here, we investigated whether structural disconnection within this network because of small-vessel disease impairs the neural processes that subserve motor slowing after errors and novelty (post-error slowing, PES; post-novel slowing, PNS). Participants with intact frontostriatal circuitry showed increased right-lateralized beta-band (12-24 Hz) synchrony between frontocentral and frontolateral electrode sites in the electroencephalogram after errors and novelty, indexing increased neural communication. Importantly, this synchrony correlated with PES and PNS across participants. Furthermore, such synchrony was reduced in participants with frontostriatal white matter damage, in line with reduced PES and PNS. The results demonstrate that behavioral change after errors and novelty result from coordinated neural activity across a frontostriatal brain network and that such cognitive control is impaired by reduced white matter integrity.
Resumo:
Background: The SNARE (Soluble N-ethylmaleimide-sensitive factor Attachment protein Receptors) and SM (Sec1/Munc18) family of proteins form the core machinery that drives the fusion of vesicles in different membrane trafficking steps. They are highly conserved, implying a similar mode of binding and function. In vertebrates, Munc18a is essential for neuronal exocytosis. It binds to its partner syntaxin1a (Syx1a) at both its N-peptide and closed conformation, and thereby inhibits SNARE complex formation in vitro. By contrast, its close homolog Munc18c is thought to interact with only the N-peptide of its partner Syx4. Moreover, different effects of Munc18c on SNARE complex formation have been reported, suggesting that the two Munc18/Syx pairs act differently. Objective: The aim of the present study was to investigate whether the mechanism of action of Munc18c indeed deviates from that of Munc18a by using sensitive biochemical and biophysical methods. Results: I found that Munc18c does have a similar binding mode as Munc18a and interacts tightly with Syx4 at both the N-peptide and closed conformation. Moreover, I established, through a novel assay, that Munc18c inhibits SNARE complex assembly, with both the binding sites contributing to inhibition, similar to Munc18a. However, there were several subtle differences between the two Munc18/Syx pairs. Munc18a exerted stronger inhibition than Munc18c. Also their respective Syx partners were found to differ in the rate of binding to SNAP25, suggesting that the equilibrium of their open and closed conformations is different. Moreover, Munc18a was found to interact with Syx 1, 2, 3 but not 4, while Munc18c bound to Syx 2, 4 and 1 but not 3. By comparing the kinetics of interaction of Syx with either Munc18 or SNAP25, I found that the block of SNARE complex assembly by Munc18 is effective on a shorter time scale, but SNAP25 eventually binds to Syx resulting in SNARE complex formation. Nevertheless, these findings do not explain how Syx can escape the tight grip of Munc18, suggesting that other proteins or mechanisms are needed for this step. I also discovered that Munc18 is able to bind on the surface of the SNARE core complex; however, this observation needs to be tested more rigorously. Conclusion: Munc18c was found to be similar to Munc18a in its mode of binding to Syx and inhibition of SNARE complex assembly. However, differences in kinetics and interaction specificities were observed between the different Munc18/Syx pairs. -- Contexte : Les familles des protéines SNARE (Soluble N-ethylmaleimide-sensitive factor At- tachment protein Receptors) et SM (Sec1/Munc18) forment le coeur de la machinerie chargée de la fusion vésiculaire au cours des différentes étapes du trafic intracellulaire. Elles sont très conservées, suggérant un mode d'interaction et des fonctions semblables. Chez les Verté- brés, Munc18a est essentielle à l'exocytose neuronale. Elle se lie à sa partenaire d'interaction syntaxin1a (Syx1a) à la fois via un peptide N-terminal et la conformation fermée de celle-ci, inhibant ainsi la formation du complexe SNARE in vitro. Son homologue proche Munc18c au contraire, est supposée interagir seulement avec le peptide N-terminal de sa partenaire Syx4. En outre, différents effets de Munc18c sur la formation du complexe SNARE ont été décrits, suggérant que les deux paires Munc18/Syx fonctionnent différemment. Objectif : Le but de cette étude est de tester si les mécanismes de fonctionnement de Munc18c diffèrent vraiment de ceux de Munc18a par le biais de méthodes biochimiques et biophysiques très précises. Résultats : J'ai pu démontrer que Munc18c se comporte en effet de façon semblable à Munc18a, et interagit étroitement avec Syx4 à ses deux sites de liaison. J'ai pu de surcroît montrer par une nouvelle méthode que Munc18c inhibe l'assemblage du complexe SNARE en impliquant ces deux sites de liaison, comme le fait Munc18a. il existe cependant de subtiles différences entre les deux paires Munc18/Syx : Munc18a exerce une inhibition plus forte que Munc18c ; leurs Syx partenaires diffèrent également dans leur degré de liaison à SNAP25, ce qui suggère un équilibre different de leurs conformations ouverte et fermée. De plus, Munc18a interagit avec Syx 1, 2 et 3 mais pas Syx 4, alors que Munc18c se lie à Syx 2, 4 et 1 mais pas Syx 3. En comparant les cinétiques d'interaction de Syx avec Munc18 ou SNAP25, j'ai découvert que le blocage par Munc18 de l'assemblage du complexe SNARE est effectif de façon brève, bien que SNAP25 finisse par se lier à Syx et aboutir ainsi à la formation du complexe SNARE. Ces découvertes n'expliquent cependant pas comment Syx parvient à échapper à la solide emprise de Munc18, et suggèrent ainsi l'intervention nécessaire d'autres protéines ou mécanismes à cette étape. J'ai également découvert que Munc18 peut se lier à la surface de la partie centrale du complexe SNARE - cette observation reste à être testée de façon plus stringente. Conclusion : Il a pu être établi que Munc18c est semblable à Munc18a quant à son mode de liaison à Syx et d'inhibition de l'assemblage du complexe SNARE. Des différences de cinétique et de spécificité d'interaction entre les diverses paires Munc18/Syx ont cependant été identifiées.