990 resultados para MAGNITUDE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

On the basis of Monte Carlo calculations of 2,2-dimethylpropane (neopentane), n-pentane, and 2,2-dimethylbutane (neohexane) at several temperatures, thermodynamic properties and radial distribution functions as well as dimerization and bonding energy distribution functions are reported for both liquid and glassy states. Changes in the radial distribution functions on cooling depend on whether the groups are accessible (peripheral) or inaccessible. Peaks in the radial distribution functions corresponding to peripheral groups do not shift to lower distances on cooling and at times display a large increase in the intensity of the first peak. The peaks due to inaccessible groups, on the other hand, shift to lower distances on cooling. The magnitude of the reorientational contribution in determining the resulting structure of the glass is estimated for the different hydrocarbon molecules investigated. The reorientational contribution is highest for neopentane (26%) followed by isopentane (24%), neohexane (22%), and n-pentane (0%). It appears that molecular geometry has an important role in determining the magnitude of the reorientational contribution to the structure of the glass.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scheelite type solid electrolytes, Li(0.5)Ce(0.5-x)Ln(x)MoO(4) (x = 0 and 0.25, Ln = Pr, Sm) have been synthesized using a solid state method. Their structure and ionic conductivity (a) were obtained by single crystal X-ray diffraction and ac-impedance spectroscopy, respectively. X-ray diffraction studies reveal a space group of I4(1)/a for Li(0.5)Ce(0.5-x)Ln(x)MoO(4) (x = 0 and 0.25, Ln = Pr, Sm) scheelite compounds. The unsubstituted Li0.5Ce0.5MoO4 showed lithium ion conductivity similar to 10(-5)-10(-3) Omega(-1)cm(-1) in the temperature range of 300-700 degrees C (sigma = 2.5 x 10(-3) Omega(-1) cm(-1) at 700 degrees C). The substituted compounds show lower conductivity compared to the unsubstituted compound, with the magnitude of ionic conductivity being two (in the high temperature regime) to one order (in the low temperature regime) lower than the unsubstituted compound. Since these scheelite type structures show significant conductivity, the series of compounds could serve in high temperature lithium battery operations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent studies have demonstrated that solvation dynamics in many common dipolar liquids contain an initial, ultrafast Gaussian component which may contribute even more than 60% to the total solvation energy. It is also known that adiabatic electron transfer reactions often probe the high-frequency components of the relevant solvent friction (Hynes, J. T. J. Phys. Chem. 1986, 90, 3701). In this paper, we present a theoretical study of the effects of the ultrafast solvent polar modes on the adiabatic electron transfer reactions by using the formalism of Hynes. Calculations have been carried out for a model system and also for water and acetonitrile. It is found that, in general, the ultrafast modes can greatly enhance the rate of electron transfer, even by more than an order of magnitude, over the rate obtained by using only the slow overdamped modes usually considered. For water, this acceleration of the rate can be attributed to the high-frequency intermolecular vibrational and librational modes. For a weakly adiabatic reaction, the rate is virtually indistinguishable from the rate predicted by the Marcus transition state theory. Another important result is that even in this case of ultrafast underdamped solvation, energy diffusion appears to be efficient so that electron transfer reaction in water is controlled essentially by the barrier crossing dynamics. This is because the reactant well frequency is-directly proportional to the rate of the initial Gaussian decay of the solvation time correlation function. As a result, the value of the friction at the reactant well frequency rarely falls below the value required for the Kramers turnover except when the polarizability of the water molecules may be neglected. On the other hand, in acetonitrile, the rate of electron transfer reaction is found to be controlled by the energy diffusion dynamics, although a significant contribution to the rate comes also from the barrier crossing rate. Therefore, the present study calls for a need to understand the relaxation of the high-frequency modes in dipolar liquids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stable and highly reproducible voltage-limiting characteristics have been observed at room temperature for polycrystalline ceramics prepared from donor-doped BaTiO3 solid solutions containing isovalent lattice substitute ions that lower the Curie point Tc. When the ambient temperature Ta is decreased such that Ta < Tc, the same ceramics show current-limiting behaviour. The leakage current, the breakdown voltage and the non-linear coefficient (α = 30−50) could be varied with grain-boundary layer (GBL) modifiers and postsintering annealing. The magnitude of the abnormally high dielectric constant (epsilon (Porson)r greater than, approximately 105) indicates the prevalence of GBL capacitance in these ceramics. Analyses of the current-voltage relations show that GBL conduction at Ta < Tc corresponds to tunnelling across asymmetric barriers formed under steady state Joule heating. At Ta > Tc, trap-related conduction gives way to tunnelling across symmetric barriers as the field strength increases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have measured the internal friction and speed of sound in several polycrystalline alloys, using compound torsional oscillators at frequencies between 60 kHz and 100 kHz and temperatures between 50 mK and 100 K. By combining these data with existing elastic and thermal data on similar alloys, we find that those alloys which can undergo diffusionsless phase transitions, such as Ti:Nb, Ti:V, or Zr:Nb in certain ranges of composition have glasslike excitations, since they have elastic properties which agree in magnitude and temperature dependence with those of amorphous solids. By contrast, crystalline continuous solution alloys, such as Nb:Ta, or alloys with diffusive phase transitions, such as high-pressure quenched Al94Si6, have the same elastic properties as are known for crystals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermopower (TEP) and electrical resistance of stoichiometric Fe3O4 crystals have been measured up to pressures of 6 GPa over the temperature range of 80-160 K. The resistance decreases markedly with increasing pressure below the Verwey transition temperature TV and TV decreases linearly with increasing pressure. The magnitude of the TEP as well as the discontinuity at TV decrease with increasing pressure. The thermopower of Fe3O4 shows an interesting upswing at low temperatures (lt;100 K) which is affected significantly by pressure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exchange of energy between Zeeman and dipolar reservoirs in the rotating frame during spin-lock has important implications for the understanding of the Hartmann-Hahn cross polarisation process and is examined here with experiments on ammonium dihydrogen phosphate. It is observed that energy exchange between the two reservoirs takes place indicating that the relative magnitude of the dipolar coupling in relation to the applied r.f. field may have a role to play in determining the rate of exchange of energy between the two reservoirs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two distinct ferromagnetic phases are present in LaMn0.5Co0.5O3 for which the spin-only magnetic moment calculated from the high temperature dc susceptibility is found to be unusually high. Such a high moment can only be accounted for by assigning the valence state of the cations to Mn2+-Co4+. This is unrealistic as the earlier report based on X-ray absorption spectroscopy (XAS) has suggested the valence state to be mainly Mn4+-Co2+ with traces of Co3+. Also from our studies using XAS, it is found that the valence state is mainly Mn4+-Co2+. In addition, no notable difference is observed in the minor Co3+ present in both phases. Our results based on X-ray magnetic circular dichroism studies (XMCD) reveal the presence of ``distinct'' high orbital moment associated with Co2+ for both phases. Thus it is found that the distinctness of the orbital moment also plays a vital role in determining the magnetic moment and T-c of both phases of LaMn0.5Co0.5O3. By considering the orbital moment obtained from XMCD, the anomaly in the paramagnetic susceptibility is resolved and thus we are able to assign the valence state to Mn4+-Co2+ configuration. The difference in the magnitude of orbital moment in both phases is believed to be due to the crystal field effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Owing to their high strength-to-weight ratio, excellent mechanical properties and corrosion resistance, titanium (Ti) and its alloys, especially (alpha+beta) alloys like Ti-6Al-4V is the backbone materials for aerospace, energy, and chemical industries. Trace boron addition (similar to 0.1 wt. %) to the alloy Ti-6Al-4V produces a reduction in as-cast grain size by roughly an order of magnitude resulting in enhanced ductility, higher stiffness, strength and good fracture resistance. Boron addition could also affect the evolution of texture and microstructure in the material. The solidification microstructures of Boron free as well as Boron containing Ti-6Al-4V are found to be almost homogeneous from periphery towards the center of as-cast ingot in terms of both alpha-colony size and distribution. Boron addition substantially reduces alpha-colony size (similar to 50-80 mu m). A gradual change in alpha texture from periphery towards the center has been observed with orientations close to specific texture components suggesting the formation of texture zones. The mechanism of texture evolution can be visualized as a result of variant selection during solidification through (alpha+beta) phase field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Higher level of inversion is achieved with a less number of switches in the proposed scheme. The scheme proposes a five-level inverter for an open-end winding induction motor which uses only two DC-link rectifiers of voltage rating of Vdc/4, a neutral-point clamped (NPC) three-level inverter and a two-level inverter. Even though the two-level inverter is connected to the high-voltage side, it is always in square-wave operation. Since the two-level inverter is not switching in a pulse width modulated fashion and the magnitude of switching transient is only half compared to the convention three-level NPC inverter, the switching losses and electromagnetic interference is not so high. The scheme is experimentally verified on a 2.5 kW induction machine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A distinctive feature of single-layer graphene is the linearly dispersive energy bands, which in the case of multilayer graphene become parabolic. A simple electrical transport-based probe to differentiate between these two band structures will be immensely valuable, particularly when quantum Hall measurements are difficult, such as in chemically synthesized graphene nanoribbons. Here we show that the flicker noise, or the 1/f noise, in electrical resistance is a sensitive and robust probe to the band structure of graphene. At low temperatures, the dependence of noise magnitude on the carrier density was found to be opposite for the linear and parabolic bands. We explain our data with a comprehensive theoretical model that clarifies several puzzling issues concerning the microscopic origin of flicker noise in graphene field-effect transistors (GraFET).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of fourteen minor elements (Al, As, B, Bi, C, Ga, Ge, In, N, P, Pb, S, Sb and Sn) on the solubility of oxygen in silicon melt has been estimated using a recently developed theoretical equation, with only fundamental physical parameters such as hard sphere diameter, atomic volume and molar heat of solution at infinite dilution as inputs. The results are expressed in the form of interaction parameters. Although only limited experimental data are available for comparison, the theoretical approach appears to predict the correct sign, but underestimates the magnitude of the interaction between oxygen and alloying elements. The present theoretical approach is useful in making qualitative predications on the effect of minor elements on the solubility of oxygen in silicon melt, when direct measurements are not available.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polycrystalline Ti thin films are shown to gradually transform from face-centered cubic (fcc) to hexagonal close-packed structure (hcp) with increasing film thickness. Diffraction stress analysis revealed that the fcc phase is formed in a highly compressive hcp matrix (>= 2 GPa), the magnitude of which decreases with increasing film thickness. A correlation between stress and crystallographic texture vis-a-vis the fcc-hcp phase transformation has been established. The total free energy change of the system upon phase transformation calculated using the experimental results shows that the fcc-hcp transformation is theoretically possible in the investigated film thickness regime (144-720 nm) and the hcp structure is stable for films thicker than 720 nm, whereas the fcc structure can be stabilized in Ti films much thinner than 144 nm. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Molecular mechanics calculations have been carried out to quantify the key geometric and strain effects which are likely to control the homo-Diels-Alder reactivity of 1,4-dienes. The criteria considered include C1..C5 and C2..C4 distances in the diene, twist angle of the two pi units, and the magnitude of strain increase as a result of cycloaddition. By first considering these factors in a number of non-conjugated dienes with known reactivity, the ranges of values within which the reaction is favoured are proposed. Calculations are also reported on several substrates which have not been investigated so far. Promising systems for experimental study are suggested which, in addition to being intrinsically interesting, would place the present proposals on a firm basis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, an attempt is made to gain a better understanding of the breakage of low-viscosity drops in turbulent flows by determining the dynamics of deformation of an inviscid drop in response to a pressure variation acting on the drop surface. Known scaling relationships between wavenumbers and frequencies, and between pressure fluctuations and velocity fluctuations in the inertial subrange are used in characterizing the pressure fluctuation. The existence of a maximum stable drop diameter d(max) follows once scaling laws of turbulent flow are used to correlate the magnitude of the disruptive forces with the duration for which they act. Two undetermined dimensionless quantities, both of order unity, appear in the equations of continuity, motion, and the boundary conditions in terms of pressure fluctuations applied on the surface. One is a constant of proportionality relating root-mean-square values of pressure and velocity differences between two points separated by a distance l. The other is a Weber number based on turbulent stresses acting on the drop and the resisting stresses in the drop due to interfacial tension. The former is set equal to 1, and the latter is determined by studying the interaction of a drop of diameter equal to d(max) with a pressure fluctuation of length scale equal to the drop diameter. The model is then used to study the breakage of drops of diameter greater than d(max) and those with densities different from that of the suspending fluid. It is found that, at least during breakage of a drop of diameter greater than d(max) by interaction with a fluctuation of equal length scale, a satellite drop is always formed between two larger drops. When very large drops are broken by smaller-length-scale fluctuations, highly deformed shapes are produced suggesting the possibility of further fragmentation due to instabilities. The model predicts that as the dispersed-phase density increases, d(max) decreases.