937 resultados para M CODES
Resumo:
Partially supported by the Technical University of Gabrovo under Grant C-801/2008
Resumo:
Constacyclic codes with one and the same generator polynomial and distinct length are considered. We give a generalization of the previous result of the first author [4] for constacyclic codes. Suitable maps between vector spaces determined by the lengths of the codes are applied. It is proven that the weight distributions of the coset leaders don’t depend on the word length, but on generator polynomials only. In particular, we prove that every constacyclic code has the same weight distribution of the coset leaders as a suitable cyclic code.
Resumo:
The emergence of digital imaging and of digital networks has made duplication of original artwork easier. Watermarking techniques, also referred to as digital signature, sign images by introducing changes that are imperceptible to the human eye but easily recoverable by a computer program. Usage of error correcting codes is one of the good choices in order to correct possible errors when extracting the signature. In this paper, we present a scheme of error correction based on a combination of Reed-Solomon codes and another optimal linear code as inner code. We have investigated the strength of the noise that this scheme is steady to for a fixed capacity of the image and various lengths of the signature. Finally, we compare our results with other error correcting techniques that are used in watermarking. We have also created a computer program for image watermarking that uses the newly presented scheme for error correction.
Resumo:
We give the necessary and sufficient conditions for the extendability of ternary linear codes of dimension k ≥ 5 with minimum distance d ≡ 1 or 2 (mod 3) from a geometrical point of view.
Resumo:
This work was partially supported by the Bulgarian National Science Fund under Grant I–618/96.
Resumo:
The relatively high phase noise of coherent optical systems poses unique challenges for forward error correction (FEC). In this letter, we propose a novel semianalytical method for selecting combinations of interleaver lengths and binary Bose-Chaudhuri-Hocquenghem (BCH) codes that meet a target post-FEC bit error rate (BER). Our method requires only short pre-FEC simulations, based on which we design interleavers and codes analytically. It is applicable to pre-FEC BER ∼10-3, and any post-FEC BER. In addition, we show that there is a tradeoff between code overhead and interleaver delay. Finally, for a target of 10-5, numerical simulations show that interleaver-code combinations selected using our method have post-FEC BER around 2× target. The target BER is achieved with 0.1 dB extra signal-to-noise ratio.
Resumo:
* This work was partially supported by the Bulgarian National Science Fund under Contract No. MM – 503/1995.