938 resultados para Low-pressure systems


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Listeria monocytogenes is a psychrotrophic food-borne pathogen that is problematic for the food industry because of its ubiquitous distribution in nature and its ability to grow at low temperatures and in the presence of high salt concentrations. Here we demonstrate that the process of adaptation to low temperature after cold shock includes elevated levels of cold shock proteins (CSPs) and that the levels of CSPs are also elevated after treatment with high hydrostatic pressure (HHP). Two-dimensional gel electrophoresis combined with Western blotting performed with anti-CspB of Bacillus subtilis was used to identify four 7-kDa proteins, designated Csp1, Csp2, Csp3, and Csp4. In addition, Southern blotting revealed four chromosomal DNA fragments that reacted with a csp probe, which also indicated that a CSP family is present in L. monocytogenes LO28. After a cold shock in which the temperature was decreased from 37°C to 10°C the levels of Csp1 and Csp3 increased 10- and 3.5-fold, respectively, but the levels of Csp2 and Csp4 were not elevated. Pressurization of L. monocytogenes LO28 cells resulted in 3.5- and 2-fold increases in the levels of Csp1 and Csp2, respectively. Strikingly, the level of survival after pressurization of cold-shocked cells was 100-fold higher than that of cells growing exponentially at 37°C. These findings imply that cold-shocked cells are protected from HHP treatment, which may affect the efficiency of combined preservation techniques.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recent activity in the development of future weather data for building performance simulation follows recognition of the limitations of traditional methods, which have been based on a stationary (observed) climate. In the UK, such developments have followed on from the availability of regional climate models as delivered in UKCIP02 and recently the probabilistic projections released under UKCP09. One major area of concern is the future performance and adaptability of buildings which employ exclusively passive or low-energy cooling systems. One such method which can be employed in an integral or retrofit situation is direct or indirect evaporative cooling. The effectiveness of evaporative cooling is most strongly influenced by the wet-bulb depression of the ambient air, hence is generally regarded as most suited to hot, dry climates. However, this technology has been shown to be effective in the UK, primarily in mixed-mode buildings or as a retrofit to industrial/commercial applications. Climate projections for the UK generally indicate an increase in the summer wet-bulb depression, suggesting an enhanced potential for the application of evaporative cooling. The paper illustrates this potential by an analysis of the probabilistic scenarios released under UKCP09, together with a detailed building/plant simulation of case study building located in the South-East of England. The results indicate a high probability that evaporative cooling will still be a viable low-energy technique in the 2050s.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper for the first time discuss the wind pressure distribution on the building surface immersed in wind profile of low-level jet rather than a logarithmic boundary-layer profile. Two types of building models are considered, low-rise and high-rise building, relative to the low-level jet height. CFD simulation is carried out. The simulation results show that the wind pressure distribution immersed in a low-jet wine profile is very different from the typical uniform and boundary-layer flow. For the low-rise building, the stagnation point is located at the upper level of windward façade for the low-level jet wind case, and the separation zone above the roof top is not as obvious as the uniform case. For the high-rise building model, the height of stagnation point is almost as high as the low-level jet height.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To mitigate the inter-carrier interference (ICI) of doubly-selective (DS) fading channels, we consider a hybrid carrier modulation (HCM) system employing the discrete partial fast Fourier transform (DPFFT) demodulation and the banded minimum mean square error (MMSE) equalization in this letter. We first provide the discrete form of partial FFT demodulation, then apply the banded MMSE equalization to suppress the residual interference at the receiver. The proposed algorithm has been demonstrated, via numerical simulations, to be its superior over the single carrier modulation (SCM) system and circularly prefixed orthogonal frequency division multiplexing (OFDM) system over a typical DS channel. Moreover, it represents a good trade-off between computational complexity and performance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A low cost, compact embedded design approach for actuating soft robots is presented. The complete fabrication procedure and mode of operation was demonstrated, and the performance of the complete system was also demonstrated by building a microcontroller based hardware system which was used to actuate a soft robot for bending motion. The actuation system including the electronic circuit board and actuation components was embedded in a 3D-printed casing to ensure a compact approach for actuating soft robots. Results show the viability of the system in actuating and controlling siliconebased soft robots to achieve bending motions. Qualitative measurements of uniaxial tensile test, bending distance and pressure were obtained. This electronic design is easy to reproduce and integrate into any specified soft robotic device requiring pneumatic actuation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Health monitoring technologies such as Body Area Network (BAN) systems has gathered a lot of attention during the past few years. Largely encouraged by the rapid increase in the cost of healthcare services and driven by the latest technological advances in Micro-Electro-Mechanical Systems (MEMS) and wireless communications. BAN technology comprises of a network of body worn or implanted sensors that continuously capture and measure the vital parameters such as heart rate, blood pressure, glucose levels and movement. The collected data must be transferred to a local base station in order to be further processed. Thus, wireless connectivity plays a vital role in such systems. However, wireless connectivity comes at a cost of increased power usage, mainly due to the high energy consumption during data transmission. Unfortunately, battery-operated devices are unable to operate for ultra-long duration of time and are expected to be recharged or replaced once they run out of energy. This is not a simple task especially in the case of implanted devices such as pacemakers. Therefore, prolonging the network lifetime in BAN systems is one of the greatest challenges. In order to achieve this goal, BAN systems take advantage of low-power in-body and on-body/off-body wireless communication technologies. This paper compares some of the existing and emerging low-power communication protocols that can potentially be employed to support the rapid development and deployment of BAN systems.