947 resultados para Low-Power Image Sensors
Resumo:
Four men, same men from a previous photograph, standing in the water of the tunnel.
Resumo:
A photograph of man working high in rafter of the tunnel with ropes securing him.
Resumo:
A photograph of the hydro tunnel wall.
Resumo:
La présence importante de plusieurs réseaux sans-fils de différentes portées a encouragée le développement d’une nouvelle génération d’équipements portables sans-fils avec plusieurs interfaces radio. Ainsi, les utilisateurs peuvent bénéficier d’une large possibilité de connectivité aux réseaux sans-fils (e.g. Wi-Fi [1], WiMAX [2], 3G [3]) disponibles autour. Cependant, la batterie d’un nœud mobile à plusieurs interfaces sera rapidement épuisée et le temps d’utilisation de l’équipement sera réduit aussi. Pour prolonger l’utilisation du mobile les standards, des réseaux sans-fils, on définie (individuellement) plusieurs états (émission, réception, sleep, idle, etc.); quand une interface radio n’est pas en mode émission/réception il est en mode sleep/idle où la consommation est très faible, comparée aux modes émission/réception. Pourtant, en cas d’équipement portable à multi-interfaces radio, l’énergie totale consommée par les interfaces en mode idle est très importante. Autrement, un équipement portable équipé de plusieurs interfaces radio augmente sa capacité de connectivité mais réduit sa longévité d’utilisation. Pour surpasser cet inconvénient on propose une plate-forme, qu'on appelle IMIP (Integrated Management of Interface Power), basée sur l’extension du standard MIH (Media Independent Handover) IEEE 802.21 [4]. IMIP permet une meilleure gestion d’énergie des interfaces radio, d’un équipement mobile à multi-radio, lorsque celles-ci entrent en mode idle. Les expérimentations que nous avons exécutées montrent que l’utilisation de IMIP permet d'économiser jusqu'a 80% de l'énergie consommée en comparaison avec les standards existants. En effet, IMIP permet de prolonger la durée d'utilisation d'équipements à plusieurs interfaces grâce à sa gestion efficace de l'énergie.
Resumo:
L’érosion éolienne est un problème environnemental parmi les plus sévères dans les régions arides, semi-arides et les régions sèches sub-humides de la planète. L’érosion des sols accélérée par le vent provoque des dommages à la fois localement et régionalement. Sur le plan local, elle cause la baisse des nutriments par la mobilisation des particules les plus fines et de la matière organique. Cette mobilisation est une des causes de perte de fertilité des sols avec comme conséquence, une chute de la productivité agricole et une réduction de la profondeur de la partie arable. Sur le plan régional, les tempêtes de poussières soulevées par le vent ont un impact non négligeable sur la santé des populations, et la déposition des particules affecte les équipements hydrauliques tels que les canaux à ciel ouvert ainsi que les infrastructures notamment de transport. Dans les régions où les sols sont fréquemment soumis à l’érosion éolienne, les besoins pour des études qui visent à caractériser spatialement les sols selon leur degré de vulnérabilité sont grands. On n’a qu’à penser aux autorités administratives qui doivent décider des mesures à prendre pour préserver et conserver les potentialités agropédologiques des sols, souvent avec des ressources financières modestes mises à leur disposition. Or, dans certaines de ces régions, comme notre territoire d’étude, la région de Thiès au Sénégal, ces études font défaut. En effet, les quelques études effectuées dans cette région ou dans des contextes géographiques similaires ont un caractère plutôt local et les approches suivies (modèles de pertes des sols) nécessitent un nombre substantiel de données pour saisir la variabilité spatiale de la dynamique des facteurs qui interviennent dans le processus de l’érosion éolienne. La disponibilité de ces données est particulièrement problématique dans les pays en voie de développement, à cause de la pauvreté en infrastructures et des problèmes de ressources pour le monitoring continu des variables environnementales. L’approche mise de l’avant dans cette recherche vise à combler cette lacune en recourant principalement à l’imagerie satellitale, et plus particulièrement celle provenant des satellites Landsat-5 et Landsat-7. Les images Landsat couvrent la presque totalité de la zone optique du spectre exploitable par télédétection (visible, proche infrarouge, infrarouge moyen et thermique) à des résolutions relativement fines (quelques dizaines de mètres). Elles permettant ainsi d’étudier la distribution spatiale des niveaux de vulnérabilité des sols avec un niveau de détails beaucoup plus fin que celui obtenu avec des images souvent utilisées dans des études environnementales telles que AVHRR de la série de satellites NOAA (résolution kilométrique). De plus, l’archive complet des images Landsat-5 et Landsat-7 couvrant une période de plus de 20 ans est aujourd’hui facilement accessible. Parmi les paramètres utilisés dans les modèles d’érosion éolienne, nous avons identifiés ceux qui sont estimables par l’imagerie satellitale soit directement (exemple, fraction du couvert végétal) soit indirectement (exemple, caractérisation des sols par leur niveau d’érodabilité). En exploitant aussi le peu de données disponibles dans la région (données climatiques, carte morphopédologique) nous avons élaboré une base de données décrivant l’état des lieux dans la période de 1988 à 2002 et ce, selon les deux saisons caractéristiques de la région : la saison des pluies et la saison sèche. Ces données par date d’acquisition des images Landsat utilisées ont été considérées comme des intrants (critères) dans un modèle empirique que nous avons élaboré en modulant l’impact de chacun des critères (poids et scores). À l’aide de ce modèle, nous avons créé des cartes montrant les degrés de vulnérabilité dans la région à l’étude, et ce par date d’acquisition des images Landsat. Suite à une série de tests pour valider la cohérence interne du modèle, nous avons analysé nos cartes afin de conclure sur la dynamique du processus pendant la période d’étude. Nos principales conclusions sont les suivantes : 1) le modèle élaboré montre une bonne cohérence interne et est sensible aux variations spatiotemporelles des facteurs pris en considération 2); tel qu’attendu, parmi les facteurs utilisés pour expliquer la vulnérabilité des sols, la végétation vivante et l’érodabilité sont les plus importants ; 3) ces deux facteurs présentent une variation importante intra et inter-saisonnière de sorte qu’il est difficile de dégager des tendances à long terme bien que certaines parties du territoire (Nord et Est) aient des indices de vulnérabilité forts, peu importe la saison ; 4) l’analyse diachronique des cartes des indices de vulnérabilité confirme le caractère saisonnier des niveaux de vulnérabilité dans la mesure où les superficies occupées par les faibles niveaux de vulnérabilité augmentent en saison des pluies, donc lorsque l’humidité surfacique et la végétation active notamment sont importantes, et décroissent en saison sèche ; 5) la susceptibilité, c’est-à-dire l’impact du vent sur la vulnérabilité est d’autant plus forte que la vitesse du vent est élevée et que la vulnérabilité est forte. Sur les zones où la vulnérabilité est faible, les vitesses de vent élevées ont moins d’impact. Dans notre étude, nous avons aussi inclus une analyse comparative entre les facteurs extraits des images Landsat et celles des images hyperspectrales du satellite expérimental HYPERION. Bien que la résolution spatiale de ces images soit similaire à celle de Landsat, les résultats obtenus à partir des images HYPERION révèlent un niveau de détail supérieur grâce à la résolution spectrale de ce capteur permettant de mieux choisir les bandes spectrales qui réagissent le plus avec le facteur étudié. Cette étude comparative démontre que dans un futur rapproché, l’amélioration de l’accessibilité à ce type d’images permettra de raffiner davantage le calcul de l’indice de vulnérabilité par notre modèle. En attendant cette possibilité, on peut de contenter de l’imagerie Landsat qui offre un support d’informations permettant tout de même d’évaluer le niveau de fragilisation des sols par l’action du vent et par la dynamique des caractéristiques des facteurs telles que la couverture végétale aussi bien vivante que sénescente.
Resumo:
In recent years scientists have made rapid and significant advances in the field of semiconductor physics. One of the most important fields of current interest in materials science is the fundamental aspects and applications of conducting transparent oxide thin films (TCO). The characteristic properties of such coatings are low electrical resistivity and high transparency in the visible region. The first semitransparent and electrically conducting CdO film was reported as early as in 1907 [1]. Though early work on these films was performed out of purely scientific interest, substantial technological advances in such films were made after 1940. The technological interest in the study of transparent semiconducting films was generated mainly due to the potential applications of these materials both in industry and research. Such films demonstrated their utility as transparent electrical heaters for windscreens in the aircraft industry. However, during the last decade, these conducting transparent films have been widely used in a variety of other applications such as gas sensors [2], solar cells [3], heat reflectors [4], light emitting devices [5] and laser damage resistant coatings in high power laser technology [6]. Just a few materials dominate the current TCO industry and the two dominant markets for TCO’s are in architectural applications and flat panel displays. The architectural use of TCO is for energy efficient windows. Fluorine doped tin oxide (FTO), deposited using a pyrolysis process is the TCO usually finds maximum application. SnO2 also finds application ad coatings for windows, which are efficient in preventing radiative heat loss, due to low emissivity (0.16). Pyrolitic tin oxide is used in PV modules, touch screens and plasma displays. However indium tin oxide (ITO) is mostly used in the majority of flat panel display (FPD) applications. In FPDs, the basic function of ITO is as transparent electrodes. The volume of FPD’s produced, and hence the volume of ITO coatings produced, continues to grow rapidly. But the current increase in the cost of indium and the scarcity of this material created the difficulty in obtaining low cost TCOs. Hence search for alternative TCO materials has been a topic of active research for the last few decades. This resulted in the development of binary materials like ZnO, SnO2, CdO and ternary materials like II Zn2SnO4, CdSb2O6:Y, ZnSO3, GaInO3 etc. The use of multicomponent oxide materials makes it possible to have TCO films suitable for specialized applications because by altering their chemical compositions, one can control the electrical, optical, chemical and physical properties. But the advantages of using binary materials are the easiness to control the chemical compositions and depositions conditions. Recently, there were reports claiming the deposition of CdO:In films with a resistivity of the order of 10-5 ohm cm for flat panel displays and solar cells. However they find limited use because of Cd-Toxicity. In this regard, ZnO films developed in 1980s, are very useful as these use Zn, an abundant, inexpensive and nontoxic material. Resistivity of this material is still not very low, but can be reduced through doping with group-III elements like In, Al or Ga or with F [6]. Hence there is a great interest in ZnO as an alternative of ITO. In the present study, we prepared and characterized transparent and conducting ZnO thin films, using a cost effective technique viz Chemical Spray Pyrolysis (CSP). This technique is also suitable for large area film deposition. It involves spraying a solution, (usually aqueous) containing soluble salts of the constituents of the desired compound, onto a heated substrate.
Resumo:
A novel technique for backscattering reduction for both TE and TM polarisation, employing a metallo-dielectric structure based on Sierpinski carpet fractal geometry, is reported. A reduction in backscattered power of --30 dB is obtained for normal incidence in the X-band for the structure using the third iterated stage of the fractal geometry
Resumo:
In recent years,photonics has emerged as an essential technology related to such diverse fields like laser technology,fiber optics,communication,optical signal processing,computing,entertainment,consumer electronics etc.Availabilities of semiconductor lasers and low loss fibers have also revolutionized the field of sensor technology including telemetry. There exist fiber optic sensors which are sensitive,reliable.light weight and accurate devices which find applications in wide range of areas like biomedicine,aviation,surgery,pollution monitoring etc.,apart from areas in basic sciences.The present thesis deals with the design,fabrication and characterization of a variety of cost effective and sensitive fiber optic sensors for the trace detetction of certain environment pollutants in air and water.The sensor design is carried out using the techniques like evanescent waves,micro bending and long period gratings.
Resumo:
The thesis presented the fabrication and characterisation of polymer optical fibers in their applications as optical amplifier and smart sensors.Optical polymers such as PMMA are found to be a very good host material due to their ability to incorporate very high concentration of optical gain media like fluorescent dyes and rare earth compounds. High power and high gain optical amplification in organic dye-doped polymer optical fibers is possible due to extremely large emission cross sections of oyes. Dye doped (Rhodamine 6G) optical fibers were fabricated by using indigenously developed polymer optical fiber drawing tower. Loss characterization of drawn dye doped fibers was carried out using side illumination technique. The advantage of the above technique is that it is a nondestructive method and can also be used for studying the uniformity in fiber diameter and doping. Sensitivity of the undoped polymer fibers to temperature and microbending were also studied in its application in smart sensors.Optical amplification studies using the dye doped polymer optical fibers were carried out and found that an amplification of l8dB could be achieved using a very short fiber of length lOcm. Studies were carried out in fibers with different dye concentrations and diameter and it was observed that gain stability was achieved at relatively high dye concentrations irrespective of the fiber diameter.Due to their large diameter, large numerical aperture, flexibility and geometrical versatility of polymer optical fibers it has a wide range of applications in the field of optical sensing. Just as in the case of conventional silica based fiber optic sensors, sensing techniques like evanescent wave, grating and other intensity modulation schemes can also be efficiently utilized in the case of POF based sensors. Since polymer optical fibers have very low Young's modulus when compared to glass fibers, it can be utilized for sensing mechanical stress and strain efficiently in comparison with its counterpart. Fiber optic sensors have proved themselves as efficient and reliable devices to sense various parameters like aging, crack formation, weathering in civil structures. A similar type of study was carried out to find the setting characteristics of cement paste used for constructing civil structures. It was found that the measurements made by using fiber optic sensors are far more superior than that carried out by conventional methods. More over,POF based sensors were found to have more sensitivity as well.
Resumo:
This thesis has discussed the development of a new metal ion doped panchromatic photopolymer for various holographic applications. High-quality panchromatic holographic recording material with high diffraction efficiency, high photosensitivity and high spatial resolution is one of the key factors for the successful recording of true colour holograms. The capability of the developed material for multicolour holography can be investigated.In the present work, multiplexing studies were carried out using He-Ne laser (632.8 nm). Multiplexing can be done using low wavelength lasers like Ar+ ion (488 nm) and frequency doubled Nd: YAG (532 nm) lasers, so as to increase the storage capacity. The photopolymer film studied had a thickness of only 130 Cm. Films with high thickness (~500 Cm) is highly essential for competitive holographic memories . Hence films with high thickness can be fabricated and efforts can be made to record more holograms or gratings in the material.In the present study, attempts were made to record data page in silver doped MBPVA/AA photopolymer film. Image of a checkerboard pattern was recorded in the film, which could be reconstructed with good image fidelity. Efforts can be made to determine the bit error rate (BER) which provides a quantitative measure of the image quality of the reconstructed image . Multiple holographic data pages can also be recorded in the material making use of different multiplexing techniques.Holographic optical elements (HOEs) are widely used in optical sensors, optical information processing, fibre optics, optical scanners and solar concentrators . The suitability of the developed film for recording holographic optical elements like lenses, beam splitters and filters can be studied.The suitability of a reflection hologram recorded in acrylamide based photopolymer for visual indication of environmental humidity is reported . Studies can be done to optimize the film composition for recording of reflection holograms.An improvement in the spatial resolution of PVA/acrylamide based photopolymer by using a low molecular-weight poly (vinyl alcohol) binder was recently reported . Effect of the molecular weight of the binder matrix on the holographic properties of the developed photopolymer system can be investigated.Incorporation of nanoparticles into photopolymer system is reported to enhance the resolution and improve the dimensional stability of the system . Hence efforts can be made to incorporate silver nanoparticles into the photopolymer and its influence on the holographic properties can be studied.This thesis was a small venture towards the realization of a big goal, a competent holographic recording material with excellent properties for practical holographic applications. As a result of the present research, we could successfully develop an efficient panchromatic photopolymer system and could demonstrate its suitability for recording transmission holograms and holographic data page. The developed photopolymer system is expected to have significant applications in the fields of true-color display holography, wavelength multiplexing holographic storage, and holographic optical elements. Highly concentrated and determined effort has yet to be put forth for this expectation to become a reality.
Resumo:
A low inductance, triggered spark gap switch suitable for a high-current fast discharge system has been developed. The details of the design and fabrication of this pressurized spark gap, which uses only commonly available materials are described. A transverse discharge Blumlein-driven N2 laser incorporating this device gives a peak output power of 700 kW with a FWHM of 3 ns and an efficiency of 0.51%, which is remarkably high for a pulsed nitrogen laser system.
Resumo:
Microbent optical fibers are potential candidates for evanescent wave sensing. We investigate the behavior of a permanently microbent fiber optic sensor when it is immersed in an absorbing medium. Two distinct detection schemes, namely, bright-field and dark-field detection configuration, are employed for the measurements. The optical power propagating through the sensor is found to vary in a logarithmic fashion with the concentration of the absorbing species in the surrounding medium. We observe that the sensitivity of the setup is dependent on the bending amplitude and length of the microbend region for the bright-field detection scheme, while it is relatively independent of both for the dark-field detection configuration. This feature can be exploited in compact sensor designs where reduction of the sensing region length is possible without sacrificing sensitivity.
Resumo:
Sonar signal processing comprises of a large number of signal processing algorithms for implementing functions such as Target Detection, Localisation, Classification, Tracking and Parameter estimation. Current implementations of these functions rely on conventional techniques largely based on Fourier Techniques, primarily meant for stationary signals. Interestingly enough, the signals received by the sonar sensors are often non-stationary and hence processing methods capable of handling the non-stationarity will definitely fare better than Fourier transform based methods.Time-frequency methods(TFMs) are known as one of the best DSP tools for nonstationary signal processing, with which one can analyze signals in time and frequency domains simultaneously. But, other than STFT, TFMs have been largely limited to academic research because of the complexity of the algorithms and the limitations of computing power. With the availability of fast processors, many applications of TFMs have been reported in the fields of speech and image processing and biomedical applications, but not many in sonar processing. A structured effort, to fill these lacunae by exploring the potential of TFMs in sonar applications, is the net outcome of this thesis. To this end, four TFMs have been explored in detail viz. Wavelet Transform, Fractional Fourier Transfonn, Wigner Ville Distribution and Ambiguity Function and their potential in implementing five major sonar functions has been demonstrated with very promising results. What has been conclusively brought out in this thesis, is that there is no "one best TFM" for all applications, but there is "one best TFM" for each application. Accordingly, the TFM has to be adapted and tailored in many ways in order to develop specific algorithms for each of the applications.
Resumo:
In many fields such as earth science biology, environment and electronics, the knowledge about elemental distributions and chemical speciation is important. The determination of metal levels especially the toxic ones both in the environment and in biological materials are increasingly demanded by the society.Ion selective sensors have become one of the most effective ad powerful means for analytical scientists for the trace level monitoring of metal ions. The wide range of applications ,low material requirements and simplicity of analytical procedure have not only brought ion-selective electrodes in to the lime light of analytical chemistry,but have promoted their use as tools for physiologists,medical researchers,biologists,geologists,environmental protection specialists etc.Potentiometric ion-selective sensors have been developed for the determination of lanthanide ions such as La3+,Nd3+,Pr3+,Sm3+, and Gd3+.The sensors fabricated include both PVC membrane sensor and chemically modified carbon paste sensor. A set of 10 sensors have been developed. The response parameters of all the sensors have been studied and the sensors were applied as an indicator electrode in the potentiometric titration and for the determination of metal ions in real samples.
Resumo:
Bio-compatible magnetic fluids having high saturation magnetization find immense applications in various biomedical fields. Aqueous ferrofluids of superparamagnetic iron oxide nanoparticles with narrow size distribution, high shelf life and good stability is realized by controlled chemical co-precipitation process. The crystal structure is verified by X-ray diffraction technique. Particle sizes are evaluated by employing Transmission electron microscopy. Room temperature and low-temperature magnetic measurements were carried out with Superconducting Quantum Interference Device. The fluid exhibits good magnetic response even at very high dilution (6.28 mg/cc). This is an advantage for biomedical applications, since only a small amount of iron is to be metabolised by body organs. Magnetic field induced transmission measurements carried out at photon energy of diode laser (670 nm) exhibited excellent linear dichroism. Based on the structural and magnetic measurements, the power loss for the magnetic nanoparticles under study is evaluated over a range of radiofrequencies.