980 resultados para Low German poetry
Resumo:
Terahertz time domain spectroscopy has been used to study low frequency confined acoustic phonons of silver nanoparticles embedded in poly (vinyl alcohol) matrix in the spectral range of 0.1-2.5 THz. The real and imaginary parts of the dielectric function show two bands at 0.60 and 2.12 THz attributed to the spheroidal and toroidal modes of silver nanoparticles, thus demonstrating the usefulness of terahertz time domain spectroscopy as a complementary technique to Raman spectroscopy in characterizing the nanoparticles. (C) 2010 American Institute of Physics. [doi:10.1063/1.3456372]
Resumo:
The anomalous behaviour of conductivity below 4 K in polypyrrole can be attributed to the possibility of tunnel transport in disordered polaronic systems. The deviation from T-1/3 and T-1/4, depending on disorder, can be due to the onset of tunnel transport between localised states, apart from the hopping contribution to the conductivity. In intermediately and lightly doped polypyrrole films, the tunnel contribution to conductivity increases with decreasing temperature in a narrow temperature range, which is a feature of the presence of polarons taking part in the conduction mechanisms of disordered systems with strong electron-phonon coupling. The transition from hopping to tunneling dominated process can be observed either by the increase in conductivity in some cases or by the saturation of conductivity, depending crucially on the extent of disorder in the sample. In both cases the transition temperature is seen to increase with the reduction in the number of localised states.
Resumo:
Ex-situ grown thin films of SrBi2Nb2O9 (SBN) were deposited on platinum substrates using laser ablation technique. A low substrate-temperature-processing route was chosen to avoid any diffusion of bismuth into the Pt electrode. It was observed that the as grown films showed an oriented growth along the 'c'-axis (with zero spontaneous polarization). The as grown films were subsequently annealed to enhance crystallization. Upon annealing, these films transformed into a polycrystalline structure, and exhibited excellent ferroelectric properties. The switching was made to be possible by lowering the thickness without losing the electrically insulating behavior of the films. The hysteresis results showed an excellent square-shaped loop with results (P-r = 4 muC/cm(2) E-c = 90 kV/cm) in good agreement with the earlier reports. The films also exhibited a dielectric constant of 190 and a dissipation factor of 0.02, which showed dispersion at low frequencies. The frequency dispersion was found to obey Jonscher's universal power law relation, and was attributed to the ionic charge hopping process according to earlier reports. The de transport studies indicated an ohmic behavior in the low voltage region, while higher voltages induced a bulk space charge and resulted in non-linear current-voltage dependence.
Resumo:
We investigate the dielectric response of single-walled carbon nanotubes dispersed in poly(vinyl alcohol) matrix by using terahertz time domain spectroscopy. Frequency-dependent real and imaginary parts of the complex dielectric function are measured experimentally in the terahertz regime. The low-frequency phonons of carbon nanotubes, though predicted theoretically, are directly observed for the first time at frequencies 0.26, 0.60, and 0.85 THz. Further, a broad resonance is observed at 1.15 THz associated with the longitudinal acoustic mode of vibration of straight-chain segments of the long polymeric molecules in the film. The latter is observed at 1.24 THz for a pristine polymer film and has been used to derive the size of crystalline lamellae in the film.
Resumo:
A novel, cost effective,environment-friendly and energetically beneficial alternative method for the synthesis of giant dielectric pseudo-perovskite material CaCu3Ti4O12 (CCTO) is presented. The method involved auto-combustion of an aqueous precursor solution in oxygen atmosphere with the help of external fuels and is capable of producing high amount of CCTO at ultra-low temperature, in the combustion residue itself. The amount of phase generated was observed to be highly dependent on the combustion process i.e. on the nature and amount of external-fuels added for combustion. Two successful fuel combinations capable of producing reasonably higher amount of the desired compound were investigated. On a structural characterization grain size was observed to decrease drastically to nano-dimension compared to submicron-size that was obtained in a traditional sol-gel combustion and subsequent cacination method. Therefore, the method reported can produce nano-crystalline CaCu3Ti4O12 ceramic matrix at an ultra-low temperature and is expected to be applicable for other multifunctional perovskite oxide materials.
Resumo:
Space-time block codes based on orthogonal designs are used for wireless communications with multiple transmit antennas which can achieve full transmit diversity and have low decoding complexity. However, the rate of the square real/complex orthogonal designs tends to zero with increase in number of antennas, while it is possible to have a rate-1 real orthogonal design (ROD) for any number of antennas.In case of complex orthogonal designs (CODs), rate-1 codes exist only for 1 and 2 antennas. In general, For a transmit antennas, the maximal rate of a COD is 1/2 + l/n or 1/2 + 1/n+1 for n even or odd respectively. In this paper, we present a simple construction for maximal-rate CODs for any number of antennas from square CODs which resembles the construction of rate-1 RODs from square RODs. These designs are shown to be amenable for construction of a class of generalized CODs (called Coordinate-Interleaved Scaled CODs) with low peak-to-average power ratio (PAPR) having the same parameters as the maximal-rate codes. Simulation results indicate that these codes perform better than the existing maximal rate codes under peak power constraint while performing the same under average power constraint.
Resumo:
Non-orthogonal space-time block codes (STBC) with large dimensions are attractive because they can simultaneously achieve both high spectral efficiencies (same spectral efficiency as in V-BLAST for a given number of transmit antennas) as well as full transmit diversity. Decoding of non-orthogonal STBCs with large dimensions has been a challenge. In this paper, we present a reactive tabu search (RTS) based algorithm for decoding non-orthogonal STBCs from cyclic division algebras (CDA) having largedimensions. Under i.i.d fading and perfect channel state information at the receiver (CSIR), our simulation results show that RTS based decoding of 12 X 12 STBC from CDA and 4-QAM with 288 real dimensions achieves i) 10(-3) uncoded BER at an SNR of just 0.5 dB away from SISO AWGN performance, and ii) a coded BER performance close to within about 5 dB of the theoretical MIMO capacity, using rate-3/4 turbo code at a spectral efficiency of 18 bps/Hz. RTS is shown to achieve near SISO AWGN performance with less number of dimensions than with LAS algorithm (which we reported recently) at some extra complexity than LAS. We also report good BER performance of RTS when i.i.d fading and perfect CSIR assumptions are relaxed by considering a spatially correlated MIMO channel model, and by using a training based iterative RTS decoding/channel estimation scheme.
Resumo:
Non-orthogonal space-time block codes (STBC) from cyclic division algebras (CDA) are attractive because they can simultaneously achieve both high spectral efficiencies (same spectral efficiency as in V-BLAST for a given number of transmit antennas) as well as full transmit diversity. Decoding of non-orthogonal STBCs with hundreds of dimensions has been a challenge. In this paper, we present a probabilistic data association (PDA) based algorithm for decoding non-orthogonal STBCs with large dimensions. Our simulation results show that the proposed PDA-based algorithm achieves near SISO AWGN uncoded BER as well as near-capacity coded BER (within 5 dB of the theoretical capacity) for large non-orthogonal STBCs from CDA. We study the effect of spatial correlation on the BER, and show that the performance loss due to spatial correlation can be alleviated by providing more receive spatial dimensions. We report good BER performance when a training-based iterative decoding/channel estimation is used (instead of assuming perfect channel knowledge) in channels with large coherence times. A comparison of the performances of the PDA algorithm and the likelihood ascent search (LAS) algorithm (reported in our recent work) is also presented.
Resumo:
The phyllite deposit of Degana, Rajasthan, containing tungsten values in the form of wolframite, (Fe, MnWO sub 4 ) finely dispersed in the quartz groundmass, has been quantitatively analysed to give 0.063% WO sub 3 , 6.66% Fe sub 2 O sub 3 , 14.30% Al sub 2 O sub 3 and 67.4% SiO sub 2 . The major gangue minerals identified are quartz, iron oxides and mica along with minor amounts of graphite, fluorite and sulphides. The amenability of the ore to gravity concentration, magnetic separation and a combination of the processes has been studied. A combination of tabling on --100 mesh ground ore and dry magnetic separation of the tabled concentrate gave a final concentrate containing 1.834% WO sub 3 with an overall recovery of only 4.6%. The complex mineralogy combined with fine dispersion of very low W values have contributed to the low recoveries and grades. Graph, photomicrographs. 10 ref.--AA
Resumo:
: Varistors prepared from ZnO with CaMnO3 perovskite as the only forming additive, exhibit voltage-limiting current-voltage characteristics with nonlinearity coefficient alpha up to 380 at low voltages of 1.8-12 V/mm. High nonlinearity is observed only with a suitable combination of processing parameters. The most crucial of them are (i) initial formulation of ceramics and (ii) the sintering temperature and conditions of post-sinter annealing. An electrically active intergranular phase is formed between ZnO grains with the composition ranging from Ca4Mn6Zn4O17 to Ca4Mn8Zn3O19, which creates the n-p-n heterojunctions. The low-voltage nonlinearity originates as a result of higher concentration of Mn(III)/Mn(IV) present at the grain boundary layer regions, being charge compensated by zinc vacancies. Under the external electric field, the barrier height is lowered due to the uphill diffusion of holes mediated by the acceptor states. Above the turn-on voltages, the unhindered transport of charge carriers between grains generates high current density associated with large nonlinearity.
Resumo:
The phenomena of nonlinear I-V behavior and electrical switching find extensive applications in power control, information storage, oscillators, etc. The study of I-V characteristics and switching parameters is necessary for the proper application of switching materials and devices. In the present work, a simple low-cost electrical switching analyzer has been developed for the measurement of the electrical characteristics of switching materials and devices. The system developed consists of a microcontroller-based excitation source and a high-speed data acquisition system. The design details of the excitation source, its interface with the high-speed data acquisition system and personal computer, and the details of the application software developed for automated measurements are described. Typical I-V characteristics and switching curves obtained with the system developed are also presented to illustrate the capability of the instrument developed.
Resumo:
Symmetrized density-matrix-renormalization-group calculations have been carried out, within Pariser-Parr-Pople Hamiltonian, to explore the nature of the ground and low-lying excited states of long polythiophene oligomers. We have exploited C-2 symmetry and spin parity of the system to obtain excited states of experimental interest, and studied the lowest dipole allowed excited state and lowest dipole forbidden two photon state, for different oligomer sizes. In the long system limit, the dipole allowed excited state always lies below the lowest dipole forbidden two-photon state which implies, by Kasha rule, that polythiophene fluoresces strongly. The lowest triplet state lies below two-photon state as usual in conjugated polymers. We have doped the system with a hole and an electron and obtained the charge excitation gap and the binding energy of the 1(1)B(u)(-) exciton. We have calculated the charge density of the ground, one-photon and two-photon states for the longer system size of 10 thiophene rings to characterize these states. We have studied bond order in these states to get an idea about the equilibrium excited state geometry of the system. We have also studied the charge density distribution of the singly and doubly doped polarons for longer system size, and observe that polythiophenes do not support bipolarons.
Resumo:
Lightweight grids for lead-acid battery grids have been prepared from acrylonitrile. butadiene styrene (ABS) copolymer followed by coating with lead. Subsequently, the grids have been electrochemically coated with a conductive and corrosion-resistant layer of polyaniline. These grids are about 75% lighter than those employed in conventional lead-acid batteries. Commercial-grade 6V/3.5 Ah (C-20-rate) lead-acid batteries have been assembled and characterized employing positive and negative plates constituting these grids. The specific energy of such a lead-acid battery is about 50 Wh/kg. The batteries can withstand fast charge-discharge duty cycles.
Resumo:
We report a simple modified polymeric precursor route for the synthesis of highly crystalline and homogenous nanoparticles of lanthanum calcium manganese oxide (LCMO). The LCMO phase formation was studied by thermal analysis, x-ray powder diffraction, and infrared spectroscopy at different stages of heating. These nanocrystallites (average particle size of 30 nm) possess ferromagnetic-paramagnetic transition temperature (T-c) of 300 K, nearly 50 K higher than that of a single crystal. The Rietveld analysis of the powder x-ray diffraction data of the nanopowders reveals significant lattice contraction and reduction in unit cell anisotropy-these structural changes are correlated to the enhancement in T-c.