954 resultados para Loop cancellation
Resumo:
Plant growth is tightly controlled through the integration of environmental cues with the physiological status of the seedling. A recent study now proposes a model explaining how the plant hormone ethylene triggers opposite growth responses depending on the light environment.
Resumo:
Phototropism allows plants to align their photosynthetic tissues with incoming light. The direction of incident light is sensed by the phototropin family of blue light photoreceptors (phot1 and phot2 in Arabidopsis), which are light-activated protein kinases. The kinase activity of phototropins and phosphorylation of residues in the activation loop of their kinase domains are essential for the phototropic response. These initial steps trigger the formation of the auxin gradient across the hypocotyl that leads to asymmetric growth. The molecular events between photoreceptor activation and the growth response are only starting to be elucidated. In this review, we discuss the major steps leading from light perception to directional growth concentrating on Arabidopsis. In addition, we highlight links that connect these different steps enabling the phototropic response.
Resumo:
The complete mitochondrial DNA (mtDNA) control region was amplified and directly sequenced in two species of shrew, Crocidura russula and Sorex araneus (Insectivora, Mammalia). The general organization is similar to that found in other mammals: a central conserved region surrounded by two more variable domains. However, we have found in shrews the simultaneous presence of arrays of tandem repeats in potential locations where repeats tend to occur separately in other mammalian species. These locations correspond to regions which are associated with a possible interruption of the replication processes, either at the end of the three-stranded D-loop structure or toward the end of the heavy-strand replication. In the left domain the repeated sequences (R1 repeats) are 78 bp long, whereas in the right domain the repeats are 12 bp long in C. russula and 14 bp long in S. araneus (R2 repeats). Variation in the copy number of these repeated sequences results in mtDNA control region length differences. Southern blot analysis indicates that level of heteroplasmy (more than one mtDNA form within an individual) differs between species. A comparative study of the R2 repeats in 12 additional species representing three shrew subfamilies provides useful indications for the understanding of the origin and the evolution of these homologous tandemly repeated sequences. An asymmetry in the distribution of variants within the arrays, as well as the constant occurrence of shorter repeated sequences flanking only one side of the R2 arrays, could be related to asymmetry in the replication of each strand of the mtDNA molecule. The pattern of sequence and length variation within and between species, together with the capability of the arrays to form stable secondary structures, suggests that the dominant mechanism involved in the evolution of these arrays in unidirectional replication slippage.
Resumo:
An automatic system was designed to concurrently measure stage and discharge for the purpose of developing stage-discharge ratings and high flow hydrographs on small streams. Stage, or gage height, is recorded by an analog-to-digital recorder and discharge is determined by the constant-rate tracer-dilution method. The system measures flow above a base stage set by the user. To test the effectiveness of the system and its components, eight systems, with a variety of equipment, were installed at crest-stage gaging stations across Iowa. A fluorescent dye, rhodamine-WT, was used as the tracer. Tracer-dilution discharge measurements were made during 14 flow periods at six stations from 1986 through 1988 water years. Ratings were developed at three stations with the aid of these measurements. A loop rating was identified at one station during rapidly-changing flow conditions. Incomplete mixing and dye loss to sediment apparently were problems at some stations. Stage hydrographs were recorded for 38 flows at seven stations. Limited data on background fluorescence during high flows were also obtained.
Resumo:
The phytochrome family of photoreceptors (there are five phytochromes in Arabidopsis, named phyA to phyE) maximally absorbs red and far-red light and plays important functions throughout the life cycle of plants. Several recent studies have shown that multiple related bHLH (basic helix-loop-helix) class transcription factors play key roles in phytochrome signal transduction. Somewhat surprisingly these transcription factors primarily act as negative regulators of phytochrome signalling. Moreover, in some cases, the phytochromes inhibit those negative regulators.
Resumo:
Acid-sensing ion channels (ASICs) are neuronal Na(+) channels that are members of the epithelial Na(+) channel/degenerin family and are transiently activated by extracellular acidification. ASICs in the central nervous system have a modulatory role in synaptic transmission and are involved in cell injury induced by acidosis. We have recently demonstrated that ASIC function is regulated by serine proteases. We provide here evidence that this regulation of ASIC function is tightly linked to channel cleavage. Trypsin cleaves ASIC1a with a similar time course as it changes ASIC1a function, whereas ASIC1b, whose function is not modified by trypsin, is not cleaved. Trypsin cleaves ASIC1a at Arg-145, in the N-terminal part of the extracellular loop, between a highly conserved sequence and a sequence that is critical for ASIC1a inhibition by the venom of the tarantula Psalmopoeus cambridgei. This channel domain controls the inactivation kinetics and co-determines the pH dependence of ASIC gating. It undergoes a conformational change during inactivation, which renders the cleavage site inaccessible to trypsin in inactivated channels.
Resumo:
We show that a new, simple, and robust general mechanism for the social suppression of within-group selfishness follows from Hamilton's rule applied in a multilevel selection approach to asymmetrical, two-person groups: If it pays a group member to behave selfishly (i.e., increase its share of the group's reproduction, at the expense of group productivity), then its partner will virtually always be favored to provide a reproductive "bribe" sufficient to remove the incentive for the selfish behavior. The magnitude of the bribe will vary directly with the number of offspring (or other close kin) potentially gained by the selfish individual and inversely with both the relatedness r between the interactants and the loss in group productivity because of selfishness. This bribe principle greatly extends the scope for cooperation within groups. Reproductive bribing is more likely to be favored over social policing for dominants rather than subordinates and as intragroup relatedness increases. Finally, analysis of the difference between the group optimum for an individual's behavior and the individual's inclusive fitness optimum reveals a paradoxical feedback loop by which bribing and policing, while nullifying particular selfish acts, automatically widen the separation of individual and group optima for other behaviors (i.e., resolution of one conflict intensifies others).
Resumo:
BACKGROUND: The efficacy of cardiac pacing for prevention of syncopal recurrences in patients with neurally mediated syncope is controversial. We wanted to determine whether pacing therapy reduces syncopal recurrences in patients with severe asystolic neurally mediated syncope. METHODS AND RESULTS: Double-blind, randomized placebo-controlled study conducted in 29 centers in the Third International Study on Syncope of Uncertain Etiology (ISSUE-3) trial. Patients were ≥40 years, had experienced ≥3 syncopal episodes in the previous 2 years. Initially, 511 patients, received an implantable loop recorder; 89 of these had documentation of syncope with ≥3 s asystole or ≥6 s asystole without syncope within 12 ± 10 months and met criteria for pacemaker implantation; 77 of 89 patients were randomly assigned to dual-chamber pacing with rate drop response or to sensing only. The data were analyzed on intention-to-treat principle. There was syncope recurrence during follow-up in 27 patients, 19 of whom had been assigned to pacemaker OFF and 8 to pacemaker ON. The 2-year estimated syncope recurrence rate was 57% (95% CI, 40-74) with pacemaker OFF and 25% (95% CI, 13-45) with pacemaker ON (log rank: P=0.039 at the threshold of statistical significance of 0.04). The risk of recurrence was reduced by 57% (95% CI, 4-81). Five patients had procedural complications: lead dislodgment in 4 requiring correction and subclavian vein thrombosis in 1 patient. CONCLUSIONS: Dual-chamber permanent pacing is effective in reducing recurrence of syncope in patients ≥40 years with severe asystolic neurally mediated syncope. The observed 32% absolute and 57% relative reduction in syncope recurrence support this invasive treatment for the relatively benign neurally mediated syncope. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT00359203.
Resumo:
In 1986, the Iowa DOT installed 700 feet of International Barrier Corporation (IBC) barrier between the 1-235 eastbound off ramp and the adjacent eastbound loop on ramp at 8th Street in West Des Moines. It is a 3 foot 6 inch high sand-filled galvanized sheet metal barrier. The bid price on this project was $130 per lineal foot. It was evaluated annually for four years. During this time, there have been no severe accidents where vehicles hit the barrier. There are scrapes and dents indicating minor accidents. The barrier has performed very well and required no maintenance. Due to its initial cost, the IBC barrier is not as cost-effective as portland cement concrete barrier rails.
Resumo:
The presence of chronic diarrhea requires a prompt diagnostic strategy in order to avoid risks of malnutrition and electrolytic disturbances. Two different clinical situations, i.e. collagen colitis and secretory diarrhea, exemplify the diagnostic evaluation of a single symptom. This non exhaustive review should lead to a diagnostic strategy of chronic diarrhea.
Resumo:
OBJECTIVE: To determine the association of changes on nailfold capillaroscopy with clinical findings and genotype in children with juvenile dermatomyositis (DM), in order to identify potential differences in disease course over 36 months. METHODS: At diagnosis of juvenile DM in 61 children prior to the initiation of treatment, tumor necrosis factor alpha (TNFalpha) -308 allele and DQA1*0501 status was determined, juvenile DM Disease Activity Scores (DAS) were obtained, and nailfold capillaroscopy was performed. The disease course was monitored for 36 months. Variations within and between patients were assessed by regression analysis. RESULTS: At diagnosis, shorter duration of untreated disease (P = 0.05) and a lower juvenile DM skin DAS (P = 0.035) were associated with a unicyclic disease course. Over 36 months, end-row loop (ERL) regeneration was associated with lower skin DAS (P < 0.001) but not muscle DAS (P = 0.98); ERL regeneration and decreased bushy loops were associated with a shorter duration of untreated disease (P = 0.04 for both). At 36 months, increased ERL regeneration (P = 0.007) and improvement of skin DAS (P < 0.001) and muscle DAS (P = 0.025) were associated with a unicyclic disease course. CONCLUSION: Early treatment of juvenile DM may lead to a unicyclic disease course. The non-unicyclic disease course usually involves continuing skin manifestations with persistent nailfold capillaroscopy changes. The correlation of nailfold capillaroscopy results with cutaneous but not with musculoskeletal signs of juvenile DM over a 36-month period suggests that the cutaneous and muscle vasculopathies have different pathophysiologic mechanisms. These findings indicate that efforts to identify the optimal treatment of cutaneous features in juvenile DM require greater attention.
Resumo:
Newly synthesized glucose transporter 4 (GLUT4) enters into the insulin-responsive storage compartment in a process that is Golgi-localized γ-ear-containing Arf-binding protein (GGA) dependent, whereas insulin-stimulated translocation is regulated by Akt substrate of 160 kDa (AS160). In the present study, using a variety of GLUT4/GLUT1 chimeras, we have analyzed the specific motifs of GLUT4 that are important for GGA and AS160 regulation of GLUT4 trafficking. Substitution of the amino terminus and the large intracellular loop of GLUT4 into GLUT1 (chimera 1-441) fully recapitulated the basal state retention, insulin-stimulated translocation, and GGA and AS160 sensitivity of wild-type GLUT4 (GLUT4-WT). GLUT4 point mutation (GLUT4-F5A) resulted in loss of GLUT4 intracellular retention in the basal state when coexpressed with both wild-type GGA and AS160. Nevertheless, similar to GLUT4-WT, the insulin-stimulated plasma membrane localization of GLUT4-F5A was significantly inhibited by coexpression of dominant-interfering GGA. In addition, coexpression with a dominant-interfering AS160 (AS160-4P) abolished insulin-stimulated GLUT4-WT but not GLUT4-F5A translocation. GLUT4 endocytosis and intracellular sequestration also required both the amino terminus and large cytoplasmic loop of GLUT4. Furthermore, both the FQQI and the SLL motifs participate in the initial endocytosis from the plasma membrane; however, once internalized, unlike the FQQI motif, the SLL motif is not responsible for intracellular recycling of GLUT4 back to the specialized compartment. Together, we have demonstrated that the FQQI motif within the amino terminus of GLUT4 is essential for GLUT4 endocytosis and AS160-dependent intracellular retention but not for the GGA-dependent sorting of GLUT4 into the insulin-responsive storage compartment.
Resumo:
Introduction: Cancer stem cells (CSC) display plasticity and self renewal properties reminiscent of normal tissue stem cells but the events responsible for their emergence remain obscure. We have recently identified CSC in Ewing sarcoma family tumors (ESFT) and shown that they arise from mesenchymal stem cells from the bone marrow. Objective of the study: To analyze the mechanisms underlying cancer stem cell development in ESFT. Methods: Primary human mesenchymal stem cells (MSC) isolation from adult and pediatric bone marrow. Retroviral delivery of fusion protein (EWS-FLI1) to primary MSC, and transcriptional and phenotypical analysis. Results: We show that the EWS-FLI-1 fusion gene, associated wit 85-90% of ESFT and believed to initiate their pathogenesis, induces expression of the embryonic stem cell (ESC) genes OCT4, SOX2 and NANOG in human pediatric MSC (hpMSC) but not in their adult counterparts. Moreover, under appropriate culture conditions, hpMSC expressing EWS-FLI-1 generate a cell subpopulation displaying ESFT CSC features in vitro. We further demonstrate that induction of the ESFT CSC phenotype is the result of the combined effect of EWSFLI- 1 on its target gene expression and repression of microRNA-145 (miRNA145) promoter activity. Finally, we provide evidence that EWS-FLI-1 and miRNA-145 function in a mutually repressive feedback loop and identify their common target gene SOX2, in addition to miRNA145 itself, as key players in ESFT cell differentiation and tumorigenicity. Conclusion: Our observations provide insight for the first time into the mechanisms whereby a single oncogene can reprogram primary cells to display a cancer stem cell phenotype.
Resumo:
Aberrations of Notch signaling have been implicated in a variety of human cancers. Oncogenic mutations in NOTCH1 are common in human T-cell leukemia and lymphomas. However, loss-of-function somatic mutations in NOTCH1 arising in solid tumors imply a tumor suppressor function, which highlights the need to understand Notch signaling more completely. Here, we describe the small GTPase RhoE/Rnd3 as a downstream mediator of Notch signaling in squamous cell carcinomas (SCC) that arise in skin epithelia. RhoE is a transcriptional target of activated Notch1, which is attenuated broadly in SCC cells. RhoE depletion suppresses Notch1-mediated signaling in vitro, rendering primary keratinocytes resistant to Notch1-mediated differentiation and thereby favoring a proliferative cell fate. Mechanistic investigations indicated that RhoE controls a key step in Notch1 signaling by mediating nuclear translocation of the activated portion of Notch1 (N1IC) through interaction with importins. Our results define RhoE as a Notch1 target that is essential for recruitment of N1IC to the promoters of Notch1 target genes, establishing a regulatory feedback loop in Notch1 signaling. This molecular circuitry may inform distinct cell fate decisions to Notch1 in epithelial tissues, where carcinomas such as SCC arise. Cancer Res; 74(7); 2082-93. ©2014 AACR.
Resumo:
Regulation of viral genome expression is the result of complex cooperation between viral proteins and host cell factors. We report here the characterization of a novel cellular factor sharing homology with the specific cysteine-rich C-terminal domain of the basic helix-loop-helix repressor protein I-mfa. The synthesis of this new factor, called HIC for Human I-mfa domain-Containing protein, is controlled at the translational level by two different codons, an ATG and an upstream non-ATG translational initiator, allowing the production of two protein isoforms, p32 and p40, respectively. We show that the HIC protein isoforms present different subcellular localizations, p32 being mainly distributed throughout the cytoplasm, whereas p40 is targeted to the nucleolus. Moreover, in trying to understand the function of HIC, we have found that both isoforms stimulate in T-cells the expression of a luciferase reporter gene driven by the human T-cell leukemia virus type I-long terminal repeat in the presence of the viral transactivator Tax. We demonstrate by mutagenesis that the I-mfa-like domain of HIC is involved in this regulation. Finally, we also show that HIC is able to down-regulate the luciferase expression from the human immunodeficiency virus type 1-long terminal repeat induced by the viral transactivator Tat. From these results, we propose that HIC and I-mfa represent two members of a new family of proteins regulating gene expression and characterized by a particular cysteine-rich C-terminal domain.