982 resultados para Liberal energy market
Resumo:
Article in Press, Corrected Proof
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Civil
Resumo:
This paper applies multidimensional scaling techniques and Fourier transform for visualizing possible time-varying correlations between 25 stock market values. The method is useful for observing clusters of stock markets with similar behavior.
Resumo:
4th International Conference on Climbing and Walking Robots - From Biology to Industrial Applications
Resumo:
Paper presented at the 5th European Conference Economics and Management of Energy in Industry, Vilamoura, Algarve. Apr. 14-17, 2009, 11p. URL: http:// www.cenertec.pt/ecemei/
Resumo:
À medida que são feitas modificações nas legislações em vigor em relação às energias renováveis, de forma a incentivar o uso destas, surge a necessidade de sincronização do consumo da instalação com a sua própria produção. As empresas líderes de mercado já possuem soluções que permitem a recolha de dados das instalações fotovoltaicas para posterior monitorização e disponibilização ao cliente. Contudo, estas soluções possuem pontos negativos tais como o preço e limitações na potência instalada permitida. Neste contexto, este documento apresenta a descrição de uma solução que serve como uma alternativa muito mais barata às soluções apresentadas pelas principais marcas mundiais no âmbito desta área, além de ser a única solução disponível desenvolvida em território nacional. Como prova da funcionalidade da solução, são descritos e apresentados diferentes tipos de testes, que simulam a interação de um utilizador com a solução desenvolvida, levados a cabo em instalações solares fotovoltaicas reais, sendo os seus resultados analisados e evidenciando a facilidade de utilização desta solução.
Resumo:
In this study, energy production for autonomous underwater vehicles is investigated. This project is part of a bigger project called TURTLE. The autonomous vehicles perform oceanic researches at seabed for which they are intended to be kept operational underwater for several months. In order to ful l a long-term underwater condition, powerful batteries are combined with \micro- scale" energy production on the spot. This work tends to develop a system that generates power up to a maximum of 30 W. Latter energy harvesting structure consists basically of a turbine combined with a generator and low-power electronics to adjust the achieved voltage to a required battery charger voltage. Every component is examined separately hence an optimum can be de ned for all, and subsequently also an overall optimum. Di erent design parameters as e.g. number of blades, solidity ratio and cross-section area are compared for di erent turbines, in order to see what is the most feasible type. Further, a generator is chosen by studying how ux distributions might be adjusted to low velocities, and how cogging torque can be excluded by adapted designs. Low-power electronics are con gured in order to convert and stabilize heavily varying three-phase voltages to a constant, recti ed voltage which is usable for battery storage. Clearly, di erent component parameters as maximum power and torque are matched here to increase the overall power generation. Furthermore an overall maximum power is set up for achieving a maximum power ow at load side. Due to among others typical low velocities of about 0.1 to 0.5 m/s, and constructing limits of the prototype, the vast range of components is restricted to only a few that could be used. Hence, a helical turbine is combined in a direct drive mode to a coreless-stator axial- ux permanent-magnet generator, from which the output voltage is adjusted subsequently by a recti er, impedance matching unit, upconverter circuit and an overall control unit to regulate di erent component parameters. All these electronics are combined in a closed-loop design to involve positive feedback signals. Furthermore a theoretical con guration for the TURTLE vehicle is described in this work and a solution is proposed that might be implemented, for which several design tests are performable in a future study.
Resumo:
Presented at Work in Progress Session, IEEE Real-Time Systems Symposium (RTSS 2015). 1 to 4, Dec, 2015. San Antonio, U.S.A..
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa Para a obtenção do Grau de Mestre em Energia e Bioenergia
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Gestão de Informação
Resumo:
We present a new deterministic dynamical model on the market size of Cournot competitions, based on Nash equilibria of R&D investment strategies to increase the size of the market of the firms at every period of the game. We compute the unique Nash equilibrium for the second subgame and the profit functions for both firms. Adding uncertainty to the R&D investment strategies, we get a new stochastic dynamical model and we analyse the importance of the uncertainty to reverse the initial advantage of one firm with respect to the other.
Resumo:
Contextualization is critical in every decision making process. Adequate responses to problems depend not only on the variables with direct influence on the outcomes, but also on a correct contextualization of the problem regarding the surrounding environment. Electricity markets are dynamic environments with increasing complexity, potentiated by the last decades' restructuring process. Dealing with the growing complexity and competitiveness in this sector brought the need for using decision support tools. A solid example is MASCEM (Multi-Agent Simulator of Competitive Electricity Markets), whose players' decisions are supported by another multiagent system – ALBidS (Adaptive Learning strategic Bidding System). ALBidS uses artificial intelligence techniques to endow market players with adaptive learning capabilities that allow them to achieve the best possible results in market negotiations. This paper studies the influence of context awareness in the decision making process of agents acting in electricity markets. A context analysis mechanism is proposed, considering important characteristics of each negotiation period, so that negotiating agents can adapt their acting strategies to different contexts. The main conclusion is that context-dependant responses improve the decision making process. Suiting actions to different contexts allows adapting the behaviour of negotiating entities to different circumstances, resulting in profitable outcomes.
Resumo:
Further improvements in demand response programs implementation are needed in order to take full advantage of this resource, namely for the participation in energy and reserve market products, requiring adequate aggregation and remuneration of small size resources. The present paper focuses on SPIDER, a demand response simulation that has been improved in order to simulate demand response, including realistic power system simulation. For illustration of the simulator’s capabilities, the present paper is proposes a methodology focusing on the aggregation of consumers and generators, providing adequate tolls for the demand response program’s adoption by evolved players. The methodology proposed in the present paper focuses on a Virtual Power Player that manages and aggregates the available demand response and distributed generation resources in order to satisfy the required electrical energy demand and reserve. The aggregation of resources is addressed by the use of clustering algorithms, and operation costs for the VPP are minimized. The presented case study is based on a set of 32 consumers and 66 distributed generation units, running on 180 distinct operation scenarios.
Resumo:
The high penetration of distributed energy resources (DER) in distribution networks and the competitive environment of electricity markets impose the use of new approaches in several domains. The network cost allocation, traditionally used in transmission networks, should be adapted and used in the distribution networks considering the specifications of the connected resources. The main goal is to develop a fairer methodology trying to distribute the distribution network use costs to all players which are using the network in each period. In this paper, a model considering different type of costs (fixed, losses, and congestion costs) is proposed comprising the use of a large set of DER, namely distributed generation (DG), demand response (DR) of direct load control type, energy storage systems (ESS), and electric vehicles with capability of discharging energy to the network, which is known as vehicle-to-grid (V2G). The proposed model includes three distinct phases of operation. The first phase of the model consists in an economic dispatch based on an AC optimal power flow (AC-OPF); in the second phase Kirschen's and Bialek's tracing algorithms are used and compared to evaluate the impact of each resource in the network. Finally, the MW-mile method is used in the third phase of the proposed model. A distribution network of 33 buses with large penetration of DER is used to illustrate the application of the proposed model.
Resumo:
In this paper, we formulate the electricity retailers’ short-term decision-making problem in a liberalized retail market as a multi-objective optimization model. Retailers with light physical assets, such as generation and storage units in the distribution network, are considered. Following advances in smart grid technologies, electricity retailers are becoming able to employ incentive-based demand response (DR) programs in addition to their physical assets to effectively manage the risks of market price and load variations. In this model, the DR scheduling is performed simultaneously with the dispatch of generation and storage units. The ultimate goal is to find the optimal values of the hourly financial incentives offered to the end-users. The proposed model considers the capacity obligations imposed on retailers by the grid operator. The profit seeking retailer also has the objective to minimize the peak demand to avoid the high capacity charges in form of grid tariffs or penalties. The non-dominated sorting genetic algorithm II (NSGA-II) is used to solve the multi-objective problem. It is a fast and elitist multi-objective evolutionary algorithm. A case study is solved to illustrate the efficient performance of the proposed methodology. Simulation results show the effectiveness of the model for designing the incentive-based DR programs and indicate the efficiency of NSGA-II in solving the retailers’ multi-objective problem.