963 resultados para Leaf-scald Pathogen
Resumo:
Apple latent infection caused by Neofabraea alba: host-pathogen interaction and disease management Bull’s eye rot (BER) caused by Neofabraea alba is one of the most frequent and damaging latent infection occurring in stored pome fruits worldwide. Fruit infection occurs in the orchard, but disease symptoms appear only 3 months after harvest, during refrigerated storage. In Italy BER is particularly serious for late harvest apple cultivar as ‘Pink Lady™’. The purposes of this thesis were: i) Evaluate the influence of ‘Pink Lady™’ apple primary metabolites in N. alba quiescence ii) Evaluate the influence of pH in five different apple cultivars on BER susceptibility iii) To find out not chemical method to control N. alba infection iv) Identify some fungal volatile compounds in order to use them as N. alba infections markers. Results regarding the role of primary metabolites showed that chlorogenic, quinic and malic acid inhibit N. alba development. The study based on the evaluation of cultivar susceptibility, showed that Granny Smith was the most resistant apple cultivar among the varieties analyzed. Moreover, Granny Smith showed the lowest pH value from harvest until the end of storage, supporting the thesis that ambient pH could be involved in the interaction between N. alba and apple. In order to find out new technologies able to improve lenticel rot management, the application of a non-destructive device for the determination of chlorophyll content was applied. Results showed that fruit with higher chlorophyll content are less susceptible to BER, and molecular analyses comforted this result. Fruits with higher chlorophyll content showed up-regulation of PGIP and HCT, genes involved in plant defence. Through the application of PTR-MS and SPME GC-MS, 25 volatile organic compounds emitted by N. alba were identified. Among them, 16 molecules were identified as potential biomarkers.
Resumo:
Delays in adequate antimicrobial treatment contribute to high cost and mortality in sepsis. Polymerase chain reaction (PCR) assays are used alongside conventional cultures to accelerate the identification of microorganisms. We analyze the impact on medical outcomes and healthcare costs if improved adequacy of antimicrobial therapy is achieved by providing immediate coverage after positive PCR reports.
Resumo:
In Arabidopsis (Arabidopsis thaliana), the blue light photoreceptor phototropins (phot1 and phot2) fine-tune the photosynthetic status of the plant by controlling several important adaptive processes in response to environmental light variations. These processes include stem and petiole phototropism (leaf positioning), leaf flattening, stomatal opening, and chloroplast movements. The PHYTOCHROME KINASE SUBSTRATE (PKS) protein family comprises four members in Arabidopsis (PKS1-PKS4). PKS1 is a novel phot1 signaling element during phototropism, as it interacts with phot1 and the important signaling element NONPHOTOTROPIC HYPOCOTYL3 (NPH3) and is required for normal phot1-mediated phototropism. In this study, we have analyzed more globally the role of three PKS members (PKS1, PKS2, and PKS4). Systematic analysis of mutants reveals that PKS2 (and to a lesser extent PKS1) act in the same subset of phototropin-controlled responses as NPH3, namely leaf flattening and positioning. PKS1, PKS2, and NPH3 coimmunoprecipitate with both phot1-green fluorescent protein and phot2-green fluorescent protein in leaf extracts. Genetic experiments position PKS2 within phot1 and phot2 pathways controlling leaf positioning and leaf flattening, respectively. NPH3 can act in both phot1 and phot2 pathways, and synergistic interactions observed between pks2 and nph3 mutants suggest complementary roles of PKS2 and NPH3 during phototropin signaling. Finally, several observations further suggest that PKS2 may regulate leaf flattening and positioning by controlling auxin homeostasis. Together with previous findings, our results indicate that the PKS proteins represent an important family of phototropin signaling proteins.
Resumo:
In this study, we investigate the accuracy of two consecutive ulcer cultures with bone contact compared to bone biopsy for the diagnosis of diabetic toe osteomyelitis. The same nurse and orthopaedic surgeon obtained all samples: sample A-1: bone contact swabbing through the ulcer; sample A-2: a second culture swabbing from the bone surface within 24 h; sample B: surgical bone biopsy in the operating theatre. The kappa statistic measure between samples A-1 and A-2 (bone contact swabs) indicated 82.35% agreement. The sensitivity, specificity, positive and negative predictive values of the two samples A compared to B were 96%, 79%, 92% and 88%, respectively, for the causative pathogen. These results were similar with prior antibiotic treatment, discordant bone surface swabs or with monomicrobial infections. As a conclusion, two consecutive diabetic toe cultures with bone contact accurately predict the pathogen of diabetic toe osteomyelitis in 90% of cases.
Resumo:
The purpose of this study was to determine the role of saliva-derived biomarkers and periodontal pathogens during periodontal disease progression (PDP). One hundred human participants were recruited into a 12-month investigation. They were seen bi-monthly for saliva and clinical measures and bi-annually for subtraction radiography, serum and plaque biofilm assessments. Saliva and serum were analyzed with protein arrays for 14 pro-inflammatory and bone turnover markers, while qPCR was used for detection of biofilm. A hierarchical clustering algorithm was used to group study participants based on clinical, microbiological, salivary/serum biomarkers, and PDP. Eighty-three individuals completed the six-month monitoring phase, with 39 [corrected] exhibiting PDP, while 44 [corrected] demonstrated stability. Participants assembled into three clusters based on periodontal pathogens, serum and salivary biomarkers. Cluster 1 members displayed high salivary biomarkers and biofilm; 71% [corrected] of these individuals were undergoing PDP. Cluster 2 members displayed low biofilm and biomarker levels; 76% [corrected] of these individuals were stable. Cluster 3 members were not discriminated by PDP status; however, cluster stratification followed groups 1 and 2 based on thresholds of salivary biomarkers and biofilm pathogens. The association of cluster membership to PDP was highly significant (p < 0.0007). [corrected] The use of salivary and biofilm biomarkers offers potential for the identification of PDP or stability (ClinicalTrials.gov number, CT00277745).
Resumo:
Background Urinary tract infections (UTI) are frequent in outpatients. Fast pathogen identification is mandatory for shortening the time of discomfort and preventing serious complications. Urine culture needs up to 48 hours until pathogen identification. Consequently, the initial antibiotic regimen is empirical. Aim To evaluate the feasibility of qualitative urine pathogen identification by a commercially available real-time PCR blood pathogen test (SeptiFast®) and to compare the results with dipslide and microbiological culture. Design of study Pilot study with prospectively collected urine samples. Setting University hospital. Methods 82 prospectively collected urine samples from 81 patients with suspected UTI were included. Dipslide urine culture was followed by microbiological pathogen identification in dipslide positive samples. In parallel, qualitative DNA based pathogen identification (SeptiFast®) was performed in all samples. Results 61 samples were SeptiFast® positive, whereas 67 samples were dipslide culture positive. The inter-methodological concordance of positive and negative findings in the gram+, gram- and fungi sector was 371/410 (90%), 477/492 (97%) and 238/246 (97%), respectively. Sensitivity and specificity of the SeptiFast® test for the detection of an infection was 0.82 and 0.60, respectively. SeptiFast® pathogen identifications were available at least 43 hours prior to culture results. Conclusion The SeptiFast® platform identified bacterial DNA in urine specimens considerably faster compared to conventional culture. For UTI diagnosis sensitivity and specificity is limited by its present qualitative setup which does not allow pathogen quantification. Future quantitative assays may hold promise for PCR based UTI pathogen identification as a supplementation of conventional culture methods.
Resumo:
Recently, the new high definition multileaf collimator (HD120 MLC) was commercialized by Varian Medical Systems providing high resolution in the center section of the treatment field. The aim of this work is to investigate the characteristics of the HD120 MLC using Monte Carlo (MC) methods.
Resumo:
Polyvalent Ig preparations, derived from the pooled plasma of thousands of healthy donors, contain a complex mix of both 'acquired' and natural antibodies directed against pathogens as well as foreign and self/auto antigens (Ag). Depending on their formulation, donor pool size, etc., liquid Ig preparations contain monomeric and dimeric IgG. The dimeric IgG fraction is thought to represent mainly idiotype-antiidiotype Ab pairs. Treatment of all IgG fractions at pH 4 effectively monomerizes the IgG dimers resulting in separated idiotype-antiidiotype Ab pairs and thus in a comparable F(ab')(2) binding site availability of the different IgG fractions. Previously, we identified an increased anti-self-reactivity within the monomerized dimer fraction. This study addressed if, among the different IgG fractions, an analogous preferential reactivity was evident in the response against different pathogen-derived protein and carbohydrate antigens. Therefore, we assessed the activity of total unseparated IgG, the monomeric and dimeric IgG fractions against antigenic structures of bacterial and viral antigens/virulence factors. All fractions showed similar reactivity to protein antigens except for exotoxin A of Pseudomonas aeruginosa, where the dimeric fraction, especially when monomerized, showed a marked increase in reactivity. This suggests that the production of antiidiotypic IgG antibodies contributes to controlling the immune response to certain categories of pathogens. In contrast, the monomeric IgG fractions showed increased reactivity towards pathogen-associated polysaccharides, classically regarded as T-independent antigens. Taken together, the differential reactivity of the IgG fractions seems to indicate a preferential segregation of antibody reactivities according to the nature of the antigen.
Resumo:
The use of preparations from Bryophyllum pinnatum (Lamarck) Oken (Kalanchoe pinnata (Lamarck) Persoon) in tocolysis is supported by clinical evidence. We studied here the effect of B. pinnatum leaf press juice and its chemical fractions on the response of human myometrial strips. No data are available if the influence on myometrial strips of the juice differs from that of its components in the chemical fractions, in order to increase the pharmacological effect.
Resumo:
Innate immunity represents the first line of defence against pathogens and plays key roles in activation and orientation of the adaptive immune response. The innate immune system comprises both a cellular and a humoral arm. Components of the humoral arm include soluble pattern recognition molecules (PRMs) that recognise pathogen-associated molecular patterns (PAMPs) and initiate the immune response in coordination with the cellular arm, therefore acting as functional ancestors of antibodies. The long pentraxin PTX3 is a prototypic soluble PRM that is produced at sites of infection and inflammation by both somatic and immune cells. Gene targeting of this evolutionarily conserved protein has revealed a nonredundant role in resistance to selected pathogens. Moreover, PTX3 exerts important functions at the cross-road between innate immunity, inflammation, and female fertility. Here, we review the studies on PTX3, with emphasis on pathogen recognition and cross-talk with other components of the innate immune system.
Resumo:
Moraxella catarrhalis is an exclusively human commensal and mucosal pathogen. Its role as a disease-causing organism has long been questioned. Today, it is recognized as one of the major causes of acute otitis media in children, and its relative frequency of isolation from both the nasopharynx and the middle ear cavity has increased since the introduction of the heptavalent pneumococcal conjugate vaccine, which is associated with a shift in the composition of the nasopharyngeal flora in infants and young children. Although otitis media caused by M. catarrhalis is generally believed to be mild in comparison with pneumococcal disease, numerous putative virulence factors have now been identified and it has been shown that several surface components of M. catarrhalis induce mucosal inflammation. In adults with chronic obstructive pulmonary disease (COPD), M. catarrhalis is now a well-established trigger of approximately 10% of acute inflammatory exacerbations.Although the so-called cold shock response is a well-described bacterial stress response in species such as Escherichia coli, Bacillus subtilis or - more recently - Staphylococcus aureus, M. catarrhalis is the only typical nasopharyngeal pathogen in which this response has been investigated. Indeed, a 3-h 26°C cold shock, which may occur physiologically, when humans inspire cold air for prolonged periods of time, increases epithelial cell adherence and enhances proinflammatory host responses and may thus contribute to the symptoms referred to as common cold, which typically are attributed to viral infections.
Resumo:
Background Actinobaculum schaalii was first described as a causative agent for human infection in 1997. Since then it has mainly been reported causing urinary tract infections (UTI) in elderly individuals with underlying urological diseases. Isolation and identification is challenging and often needs molecular techniques. A. schaalii is increasingly reported as a cause of infection in humans, however data in children is very limited. Case presentation We present the case of an 8-month-old Caucasian boy suffering from myelomeningocele and neurogenic bladder who presented with a UTI. An ultrasound of the urinary tract was unremarkable. Urinalysis and microscopy showed an elevated leukocyte esterase test, pyuria and a high number of bacteria. Empiric treatment with oral co-trimoxazole was started. Growth of small colonies of Gram-positive rods was observed after 48 h. Sequencing of the 16S rRNA gene confirmed an A. schaalii infection 9 days later. Treatment was changed to oral amoxicillin for 14 days. On follow-up urinalysis was normal and urine cultures were negative. Conclusions A.schaalii is an emerging pathogen in adults and children. Colonization and subsequent infection seem to be influenced by the age of the patient. In young children with high suspicion of UTI who use diapers or in children who have known abnormalities of their urogenital tract, infection with A. schaalii should be considered and empiric antimicrobial therapy chosen accordingly.