986 resultados para Latitudinal Gradient Project
Resumo:
25 p.
Resumo:
Loch Fleet is a small upland lake in the hills of Galloway in southwest Scotland. In the 1970s the waters of the loch became more acidic and a brown trout fishery failed. This account summarises an experimental project, the "Loch Fleet Project" initiated in 1984, designed to reverse acidification of the loch by liming parts of the catchment. Liming about 40% of the catchment in 1986 and 1987 raised the pH and calcium levels, and reduced toxic aluminium concentrations. The improved conditions had been maintained up to 1994, but water in the loch, and its principal inflow stream, is now falling close to the desired threshold of quality. After liming, restocking with local strains of trout in 1987 was successful, and a self-recruiting population became established within 2 years. Recruitment is highly variable, however, and was attributed to severe spring conditions and the limited spawning capacity of the nursery stream, rather than to water quality.
Resumo:
This new project is multidisciplinary, with physical and chemical palaeolimnological aspects mainly the responsibility of Swiss and Russian scientists, and the biological limnology and palaeolimnology components mainly undertaken by the British and Russian groups. The overall project aim is to improve palaeoclimate reconstructions using sedimentary diatoms by promoting better understanding of diatom ecology and sediment-forming processes. The initial work plan is divided into four main parts: To understand diatom phytoplankton ecology more fully, to assess taphonomic changes associated with the transformation of phytoplankton diatom communities into sediment assemblages, to demonstrate sediment core integrity and representativity and to calibrate modern diatom assemblages against contemporary climate records. The preliminary results from the interrelated studies of phytoplankton, sediment traps and sediment cores used in GEOPASS-NERC, demonstrate the complexity of links between the living and fossil systems. Furthermore, the nature of recent sedimentation in Lake Baikal is spatially variable and incompletely known. This poses a major challenge to palaeolimnological interpretation. Turbidite deposits and differential preservation of microfossils, combined with inadequate knowledge of the modern ecology of endemic diatoms, all conspire to obfuscate the sedimentary record of environmental change.
Resumo:
This report is a product of close industry-academia collaboration between British Aerospace and the Cambridge Engineering Design Centre (EDC). British Aerospace designs and integrates some of the most complex systems in the world, and its expertise in this field has enabled the company to become the United Kingdom's largest exporter. However, to stay at the forefront of the highly competitive aerospace industry it is necessary to seek new ways to work more effectively and more efficiently. The Cambridge EDC has played a part in supporting these needs by providing access to the methods and tools that it has developed for improving the process of designing mechanical systems. The EDC has gained an international reputation for the quality of its work in this subject. Thus, the collaboration is between two organisations each of whom are leaders in their respective fields. The central aim of the project has been to demonstrate how a systematic design process can be applied to a real design task identified by industry. The task selected was the design of a flight refuelling probe which would enable a combat aircraft to refuel from a "flying tanker". However, the systematic approach, methods and tools described in this report are applicable to most engineering design tasks. The findings presented in this report provide a sound basis for comparing the recommended systematic design process with industrial practice. The results of this comparison would enable the company to define ways in which its existing design process can be improved. This research project has a high degree of industrial relevance. The value of the work may be judged in terms of the opportunities it opens up for positive changes to the company's engineering operations. Several members of the EDC have contributed to the project. These include Dr Lucienne Blessing, Dr Stuart Burgess, Dr Amaresh Chakrabarti, Major Mark Nowack, Aylmer Johnson and Dr Paul Weaver. At British Aerospace special thanks must go to Alan Dean and David Halliday for their interest and the support they have given. The project has been managed by Dr Nigel Upton of British Aerospace during a 3 year secondment to the EDC.
Resumo:
This paper is an attempt to set the background, provide a brief history, review some of the Windermere perch and pike project's scientific achievements, note current developments and hopes for the future, and comment on some aspects of such long-term projects. The project was originally started in 1939 in order to provide fish in freshwater lakes which might be harvested to enhance the supplies of food in a country subject to blockade. Pike traps and gill-netting were trialed as fishing methods. Catch statistics are available from 1939 which can be used to study population dynamics or for modelling purposes. The author provides an overview of changes in the population dynamics of perch and pike but covers briefly other species like arctic charr and brown trout. Also covered are several aspects of the basic biology and ecology of the principal species involved.
Resumo:
An extreme dry-down and muck-removal project was conducted at Lake Tohopekaliga, Florida, in 2003-2004, to remove dense vegetation from inshore areas and improve habitat degraded by stabilized water levels. Vegetation was monitored from June 2002 to December 2003, to describe the pre-existing communities in terms of composition and distribution along the environmental gradients. Three study areas (Treatment-Selection Sites) were designed to test the efficacy of different treatments in enhancing inshore habitat, and five other study areas (Whole-Lake Monitoring Sites) were designed to monitor the responses of the emergent littoral vegetation as a whole. Five general community types were identified within the study areas by recording aboveground biomasses and stem densities of each species. These communities were distributed along water and soils gradients, with water depth and bulk density explaining most of the variation. The shallowest depths were dominated by a combination of Eleocharis spp., Luziola fluitans, and Panicum repens; while the deeper areas had communities of Nymphaea odorata and Nuphar luteum; Typha spp.; or Paspalidium geminatum and Hydrilla verticillata. Mineralized soils were common in both the shallow and deep-water communities, while the intermediate depths had high percentages of organic material in the soil. These intermediate depths (occurring just above and just below low pool stage) were dominated by Pontederia cordata, the main species targeted by the habitat enhancement project. This emergent community occurred in nearly monocultural bands around the lake (from roughly 60–120 cm in depth at high pool stage) often having more diverse floating mats along the deep-water edge. The organic barrier these mats create is believed to impede access of sport fish to shallow-water spawning areas, while the overall low diversity of the community is evidence of its competitive nature in stabilized waters. With continued monitoring of these study areas long-term effects of the restoration project can be assessed and predictive models may be created to determine the efficacy and legitimacy of such projects in the future.