990 resultados para Latent state–trait theory
Resumo:
The Madden-Julian Oscillation (MJO) is a pattern of intense rainfall and associated planetary-scale circulations in the tropical atmosphere, with a recurrence interval of 30-90 days. Although the MJO was first discovered 40 years ago, it is still a challenge to simulate the MJO in general circulation models (GCMs), and even with simple models it is difficult to agree on the basic mechanisms. This deficiency is mainly due to our poor understanding of moist convection—deep cumulus clouds and thunderstorms, which occur at scales that are smaller than the resolution elements of the GCMs. Moist convection is the most important mechanism for transporting energy from the ocean to the atmosphere. Success in simulating the MJO will improve our understanding of moist convection and thereby improve weather and climate forecasting.
We address this fundamental subject by analyzing observational datasets, constructing a hierarchy of numerical models, and developing theories. Parameters of the models are taken from observation, and the simulated MJO fits the data without further adjustments. The major findings include: 1) the MJO may be an ensemble of convection events linked together by small-scale high-frequency inertia-gravity waves; 2) the eastward propagation of the MJO is determined by the difference between the eastward and westward phase speeds of the waves; 3) the planetary scale of the MJO is the length over which temperature anomalies can be effectively smoothed by gravity waves; 4) the strength of the MJO increases with the typical strength of convection, which increases in a warming climate; 5) the horizontal scale of the MJO increases with the spatial frequency of convection; and 6) triggered convection, where potential energy accumulates until a threshold is reached, is important in simulating the MJO. Our findings challenge previous paradigms, which consider the MJO as a large-scale mode, and point to ways for improving the climate models.
Resumo:
Methods that exploit the intrinsic locality of molecular interactions show significant promise in making tractable the electronic structure calculation of large-scale systems. In particular, embedded density functional theory (e-DFT) offers a formally exact approach to electronic structure calculations in which the interactions between subsystems are evaluated in terms of their electronic density. In the following dissertation, methodological advances of embedded density functional theory are described, numerically tested, and applied to real chemical systems.
First, we describe an e-DFT protocol in which the non-additive kinetic energy component of the embedding potential is treated exactly. Then, we present a general implementation of the exact calculation of the non-additive kinetic potential (NAKP) and apply it to molecular systems. We demonstrate that the implementation using the exact NAKP is in excellent agreement with reference Kohn-Sham calculations, whereas the approximate functionals lead to qualitative failures in the calculated energies and equilibrium structures.
Next, we introduce density-embedding techniques to enable the accurate and stable calculation of correlated wavefunction (CW) in complex environments. Embedding potentials calculated using e-DFT introduce the effect of the environment on a subsystem for CW calculations (WFT-in-DFT). We demonstrate that WFT-in-DFT calculations are in good agreement with CW calculations performed on the full complex.
We significantly improve the numerics of the algorithm by enforcing orthogonality between subsystems by introduction of a projection operator. Utilizing the projection-based embedding scheme, we rigorously analyze the sources of error in quantum embedding calculations in which an active subsystem is treated using CWs, and the remainder using density functional theory. We show that the embedding potential felt by the electrons in the active subsystem makes only a small contribution to the error of the method, whereas the error in the nonadditive exchange-correlation energy dominates. We develop an algorithm which corrects this term and demonstrate the accuracy of this corrected embedding scheme.
Resumo:
In this work we chiefly deal with two broad classes of problems in computational materials science, determining the doping mechanism in a semiconductor and developing an extreme condition equation of state. While solving certain aspects of these questions is well-trodden ground, both require extending the reach of existing methods to fully answer them. Here we choose to build upon the framework of density functional theory (DFT) which provides an efficient means to investigate a system from a quantum mechanics description.
Zinc Phosphide (Zn3P2) could be the basis for cheap and highly efficient solar cells. Its use in this regard is limited by the difficulty in n-type doping the material. In an effort to understand the mechanism behind this, the energetics and electronic structure of intrinsic point defects in zinc phosphide are studied using generalized Kohn-Sham theory and utilizing the Heyd, Scuseria, and Ernzerhof (HSE) hybrid functional for exchange and correlation. Novel 'perturbation extrapolation' is utilized to extend the use of the computationally expensive HSE functional to this large-scale defect system. According to calculations, the formation energy of charged phosphorus interstitial defects are very low in n-type Zn3P2 and act as 'electron sinks', nullifying the desired doping and lowering the fermi-level back towards the p-type regime. Going forward, this insight provides clues to fabricating useful zinc phosphide based devices. In addition, the methodology developed for this work can be applied to further doping studies in other systems.
Accurate determination of high pressure and temperature equations of state is fundamental in a variety of fields. However, it is often very difficult to cover a wide range of temperatures and pressures in an laboratory setting. Here we develop methods to determine a multi-phase equation of state for Ta through computation. The typical means of investigating thermodynamic properties is via ’classical’ molecular dynamics where the atomic motion is calculated from Newtonian mechanics with the electronic effects abstracted away into an interatomic potential function. For our purposes, a ’first principles’ approach such as DFT is useful as a classical potential is typically valid for only a portion of the phase diagram (i.e. whatever part it has been fit to). Furthermore, for extremes of temperature and pressure quantum effects become critical to accurately capture an equation of state and are very hard to capture in even complex model potentials. This requires extending the inherently zero temperature DFT to predict the finite temperature response of the system. Statistical modelling and thermodynamic integration is used to extend our results over all phases, as well as phase-coexistence regions which are at the limits of typical DFT validity. We deliver the most comprehensive and accurate equation of state that has been done for Ta. This work also lends insights that can be applied to further equation of state work in many other materials.
Resumo:
The superspace approach provides a manifestly supersymmetric formulation of supersymmetric theories. For N= 1 supersymmetry one can use either constrained or unconstrained superfields for such a formulation. Only the unconstrained formulation is suitable for quantum calculations. Until now, all interacting N>1 theories have been written using constrained superfields. No solutions of the nonlinear constraint equations were known.
In this work, we first review the superspace approach and its relation to conventional component methods. The difference between constrained and unconstrained formulations is explained, and the origin of the nonlinear constraints in supersymmetric gauge theories is discussed. It is then shown that these nonlinear constraint equations can be solved by transforming them into linear equations. The method is shown to work for N=1 Yang-Mills theory in four dimensions.
N=2 Yang-Mills theory is formulated in constrained form in six-dimensional superspace, which can be dimensionally reduced to four-dimensional N=2 extended superspace. We construct a superfield calculus for six-dimensional superspace, and show that known matter multiplets can be described very simply. Our method for solving constraints is then applied to the constrained N=2 Yang-Mills theory, and we obtain an explicit solution in terms of an unconstrained superfield. The solution of the constraints can easily be expanded in powers of the unconstrained superfield, and a similar expansion of the action is also given. A background-field expansion is provided for any gauge theory in which the constraints can be solved by our methods. Some implications of this for superspace gauge theories are briefly discussed.
Resumo:
In this thesis, we discuss 3d-3d correspondence between Chern-Simons theory and three-dimensional N = 2 superconformal field theory. In the 3d-3d correspondence proposed by Dimofte-Gaiotto-Gukov information of abelian flat connection in Chern-Simons theory was not captured. However, considering M-theory configuration giving the 3d-3d correspondence and also other several developments, the abelian flat connection should be taken into account in 3d-3d correspondence. With help of the homological knot invariants, we construct 3d N = 2 theories on knot complement in 3-sphere for several simple knots. Previous theories obtained by Dimofte-Gaiotto-Gukov can be obtained by Higgsing of the full theories. We also discuss the importance of all flat connections in the 3d-3d correspondence by considering boundary conditions in 3d N = 2 theories and 3-manifold.
Resumo:
Close to equilibrium, a normal Bose or Fermi fluid can be described by an exact kinetic equation whose kernel is nonlocal in space and time. The general expression derived for the kernel is evaluated to second order in the interparticle potential. The result is a wavevector- and frequency-dependent generalization of the linear Uehling-Uhlenbeck kernel with the Born approximation cross section.
The theory is formulated in terms of second-quantized phase space operators whose equilibrium averages are the n-particle Wigner distribution functions. Convenient expressions for the commutators and anticommutators of the phase space operators are obtained. The two-particle equilibrium distribution function is analyzed in terms of momentum-dependent quantum generalizations of the classical pair distribution function h(k) and direct correlation function c(k). The kinetic equation is presented as the equation of motion of a two -particle correlation function, the phase space density-density anticommutator, and is derived by a formal closure of the quantum BBGKY hierarchy. An alternative derivation using a projection operator is also given. It is shown that the method used for approximating the kernel by a second order expansion preserves all the sum rules to the same order, and that the second-order kernel satisfies the appropriate positivity and symmetry conditions.
Resumo:
The problem of s-d exchange scattering of conduction electrons off localized magnetic moments in dilute magnetic alloys is considered employing formal methods of quantum field theoretical scattering. It is shown that such a treatment not only allows for the first time, the inclusion of multiparticle intermediate states in single particle scattering equations but also results in extremely simple and straight forward mathematical analysis. These equations are proved to be exact in the thermodynamic limit. A self-consistent integral equation for electron self energy is derived and approximately solved. The ground state and physical parameters of dilute magnetic alloys are discussed in terms of the theoretical results. Within the approximation of single particle intermediate states our results reduce to earlier versions. The following additional features are found as a consequence of the inclusion of multiparticle intermediate states;
(i) A non analytic binding energy is pre sent for both, antiferromagnetic (J < o) and ferromagnetic (J > o) couplings of the electron plus impurity system.
(ii) The correct behavior of the energy difference of the conduction electron plus impurity system and the free electron system is found which is free of unphysical singularities present in earlier versions of the theories.
(iii) The ground state of the conduction electron plus impurity system is shown to be a many-body condensate state for J < o and J > o, both. However, a distinction is made between the usual terminology of "Singlet" and "Triplet" ground states and nature of our ground state.
(iv) It is shown that a long range ordering, leading to an ordering of the magnetic moments can result from a contact interaction such as the s-d exchange interaction.
(v) The explicit dependence of the excess specific heat of the Kondo systems is obtained and found to be linear in temperatures as T→ o and T ℓnT for 0.3 T_K ≤ T ≤ 0.6 T_K. A rise in (ΔC/T) for temperatures in the region 0 < T ≤ 0.1 T_K is predicted. These results are found to be in excellent agreement with experiments.
(vi) The existence of a critical temperature for Ferromagnetic coupling (J > o) is shown. On the basis of this the apparent contradiction of the simultaneous existence of giant moments and Kondo effect is resolved.
Resumo:
Em sua teoria do conhecimento, cuja formulação definitiva se encontra na segunda parte da Ethica, Spinoza afirma que o conhecimento que se dá por meio de signos pertence à Imaginação, isto é, ao primeiro gênero de conhecimento, o qual é essencialmente inadequado uma vez que não consegue compreender a natureza das coisas, mas simplesmente as conhece de forma mutilada e confusa. Contudo, atribuir o conhecimento ex signis ao âmbito imaginativo não pode implicar a recusa, por parte de Spinoza, de toda e qualquer utilização de signos a fim de comunicar o conhecimento verdadeiro, sob pena de o próprio texto da Ethica deslegitimar suas pretensões de verdade já no momento mesmo em que se anuncia. Partindo do princípio de que deve haver certo modo de utilização de signos que consiga contornar, em alguma medida, sua constituição essencialmente inadequada a fim de comunicar idéias adequadas, a presente investigação reconstrói uma teoria da linguagem subjacente à doutrina da Ethica na tentativa de estabelecer por que meios se pode efetuar uma utilização filosófica dos signos.
Resumo:
The problem is to calculate the attenuation of plane sound waves passing through a viscous, heat-conducting fluid containing small spherical inhomogeneities. The attenuation is calculated by evaluating the rate of increase of entropy caused by two irreversible processes: (1) the mechanical work done by the viscous stresses in the presence of velocity gradients, and (2) the flow of heat down the thermal gradients. The method is first applied to a homogeneous fluid with no spheres and shown to give the classical Stokes-Kirchhoff expressions. The method is then used to calculate the additional viscous and thermal attenuation when small spheres are present. The viscous attenuation agrees with Epstein's result obtained in 1941 for a non-heat-conducting fluid. The thermal attenuation is found to be similar in form to the viscous attenuation and, for gases, of comparable magnitude. The general results are applied to the case of water drops in air and air bubbles in water.
For water drops in air the viscous and thermal attenuations are camparable; the thermal losses occur almost entirely in the air, the thermal dissipation in the water being negligible. The theoretical values are compared with Knudsen's experimental data for fogs and found to agree in order of magnitude and dependence on frequency. For air bubbles in water the viscous losses are negligible and the calculated attenuation is almost completely due to thermal losses occurring in the air inside the bubbles, the thermal dissipation in the water being relatively small. (These results apply only to non-resonant bubbles whose radius changes but slightly during the acoustic cycle.)
Resumo:
JA-925
Resumo:
An approximate theory for steady irrotational flow through a cascade of thin cambered airfoils is developed. Isolated thin airfoils have only slight camber is most applications, and the well known methods that replace the source and vorticity distributions of the curved camber line by similar distributions on the straight chord line are adequate. In cascades, however, the camber is usually appreciable, and significant errors are introduced if the vorticity and source distributions on the camber line are approximated by the same distribution on the chord line.
The calculation of the flow field becomes very clumsy in practice if the vorticity and source distributions are not confined to a straight line. A new method is proposed and investigated; in this method, at each point on the camber line, the vorticity and sources are assumed to be distributed along a straight line tangent to the camber line at that point, and corrections are determined to account for the deviation of the actual camber line from the tangent line. Hence, the basic calculation for the cambered airfoils is reduced to the simpler calculation of the straight line airfoils, with the equivalent straight line airfoils changing from point to point.
The results of the approximate method are compared with numerical solutions for cambers as high as 25 per cent of the chord. The leaving angles of flow are predicted quite well, even at this high value of the camber. The present method also gives the functional relationship between the exit angle and the other parameters such as airfoil shape and cascade geometry.
Resumo:
We develop a method for performing one-loop calculations in finite systems that is based on using the WKB approximation for the high energy states. This approximation allows us to absorb all the counterterms analytically and thereby avoids the need for extreme numerical precision that was required by previous methods. In addition, the local approximation makes this method well suited for self-consistent calculations. We then discuss the application of relativistic mean field methods to the atomic nucleus. Self-consistent, one loop calculations in the Walecka model are performed and the role of the vacuum in this model is analyzed. This model predicts that vacuum polarization effects are responsible for up to five percent of the local nucleon density. Within this framework the possible role of strangeness degrees of freedom is studied. We find that strangeness polarization can increase the kaon-nucleus scattering cross section by ten percent. By introducing a cutoff into the model, the dependence of the model on short-distance physics, where its validity is doubtful, is calculated. The model is very sensitive to cutoffs around one GeV.