992 resultados para Late Glacial


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Alps and the Alpine foreland have been shaped by repeated glaciations during Quaternary glacial-interglacial cycles. Extent, timing and impact on landscape evolution of these glaciations are, however, poorly constrained due to the fragmentary character of terrestrial archives. In this context, the sedimentary infills of subglacially eroded, ‘overdeepened’, basins may serve as important archives to complement the Quaternary stratigraphy over several glacial-interglacial cycles. In this thesis, the infills of deep subglacial basins in the Lower Glatt valley (N Switzerland) are explored to better constrain the Middle- to Late Pleistocene environmental change. Five drill cores gave direct insight into to the up to ~200 m thick valley fill at the study site and allowed for detailed analysis of sedimentary facies, age and architecture of the basin fills. A first focus is set on the sedimentology of coarse-grained diamicts with sorted interbeds overlying bedrock in the trough center, which mark the onset of deposition in many glacial bedrock troughs. Evidence from macro- and microsedimentology suggests that these sediments are emplaced subglacially and reflect deposition, reworking and deformation in response to repeated coupling and decoupling of the ice-bed interface promoted by high basal water pressures. Overlying these subglacial sediments, large volumes of sandy glacio-deltaic, fine-grained glacio-lacustrine and lacustrine sediments document sedimentation during glacier retreat from the basins. On these thick valley fill sequences the applicability and reliability of luminescence dating is investigated in a second step on the basis of experiments with several different luminescence signals, protocols and experiments to assess the signal stability. The valley fill of the Lower Glatt valley is then grouped into nine depositional cycles (Formations A-I), which are related to the Birrfeld Glaciation (~MIS2), the Beringen Glaciation (~MIS6), and up to three earlier Middle Pleistocene glaciations, tentatively correlated to the Hagenholz, Habsburg, and Möhlin Glaciations, according to the regional glaciation history. The complex bedrock geometry and valley fill architecture are shown to be the result of multiple erosion and infilling cycles and reflect the interplay of subglacial erosion, glacial to lacustrine infilling of overdeepened basins, and fluvial down-cutting and aggradation in the non-overdeepened valley fill. Evidence suggests that in the study area deep bedrock incision, and/or partial re-excavation, occurred mainly during the Beringen and Hagenholz Glaciation, while older structures may have existed. Together with the observation of minor, ‘inlaid’ glacial basins, dynamic changes in the magnitude and focus of subglacial erosion over time are documented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One articulated and several partial, semi-articulated specimens of acanthodians were collected in 1970 from the freshwater deposits of the Aztec Siltstone (Middle Devonian; Givetian), Portal Mountain, southern Victoria Land, Antarctica, during a Victoria University of Wellington Antarctic Expedition. The Portal Mountain fish fauna, preserved in a finely laminated, non-calcareous siltstone, includes acanthodians, palaeoniscoids, and bothriolepid placoderms. The articulated acanthodian specimens are the most complete fossil fish remains documented so far from the Aztec assemblage, which is the most diverse fossil vertebrate fauna known from Antarctica. They are described as a new taxon, Milesacanthus antarctica gen. et sp. nov., which is assigned to the family Diplacanthidae. Its fin spines show some similarities to spine fragments named Byssacanthoides debenhami from glacial moraine at Granite Harbour, Antarctica, and much larger spines named Antarctonchus glacialis from outcrops of the Aztec Siltstone in the Boomerang Range, southern Victoria Land. Both of these are reviewed, and retained as form taxa for isolated spines. Various isolated remains of fin spines and scales are described from Portal Mountain and Mount Crean (Lashly Range), and referred to Milesacanthus antarctica gen. et sp. nov. The histology of spines and scales is documented for the first time, and compared with acanthodian material from the Devonian of Australia and Europe. Distinctive fin spines from Mount Crean are provisionally assigned to Culmacanthus antarctica Young, 1989b. Several features on the most complete of the new fish specimens - in particular, the apparent lack of an enlarged cheek plate - suggest a revision of the diagnosis for the Diplacanthidae.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The age structure and, stable isotope composition of a stalagmite (CC I) from an upland cave in central-western Italy were studied to investigate regional response to global climatic changes. Four growth phases are constrained by 28 thermal ionization and multi-collector inductively coupled plasma mass spectrometry Th-U ages and reveal intermittent deposition through the period between Marine isotope Stage (MIS) 11 and 3 (similar to380 and similar to43 kyr). Most of the growth took place between similar to380 and similar to280 kyr, a period punctuated briefly by a hiatus in deposition through the glacial maximum of MIS 10. Growth was terminated abruptly at 280 kyr just prior to the MIS 8 glacial maximum. With a present-day chamber temperature of 7.5 degreesC, the timing of hiatuses close to these glacial maxima point to freezing conditions at the time. No deposition was recorded through the entirety of MIS 7 and most of MIS 6, whilst two minor growth phases occurred at similar to141-125 and similar to43 kyr. Growth at 141 kyr indicates temperatures >0 degreesC at a time when MIS 6 ice volumes were close to their maximum. High stable carbon isotope (delta(13)C) values (similar to2.8parts per thousand to +3.1parts per thousand) throughout the stalagmite's growth reflect a persistently low input of biogenic CO2, indicating that the steep, barren and alpine-like recharge area of today ha's been in existence for at least the last similar to380 kyr. During MIS 9, the lowest delta(13)C values occur well after maximum interglacial conditions, suggesting a lag in the development of post-glacial soils in this high-altitude karst. The stable oxygen isotope (delta(18)O) trends match the main structural features of the major climate proxy records (SPECMAP, Vostok and Devils Hole), suggesting that the delta(18)O of CC1 has responded to global-scale climate changes, whilst remarkable similarity exists between CC1 delta(18)O and regional sea-surface temperature reconstructions from North Atlantic core ODP980 and southwest Pacific marine core MD97-2120 through the most detailed part of the CC1 record, MIS 9-8. The results suggest that CC1 and other stalagmites from the cave have the potential to capture a long record of regional temperature trends, particularly in regards to the relative severity of Pleistocene glacial stages. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The degree to which Southern Hemisphere climatic changes during the end of the last glacial period and early Holocene (30-8 ka) were influenced or initiated by events occurring in the high latitudes of the Northern Hemisphere is a complex issue. There is conflicting evidence for the degree of hemispheric 'teleconnection' and an unresolved debate as to the principle forcing mechanism(s). The available hypotheses are difficult to test robustly, however, because the few detailed palaeoclimatic records in the Southern Hemisphere are widely dispersed and lack duplication. Here we present climatic and environmental reconstructions from across Australia, a key region of the Southern Hemisphere because of the range of environments it covers and the potentially important role regional atmospheric and oceanic controls play in global climate change. We identify a general scheme of events for the end of the last glacial period and early Holocene but a detailed reconstruction proved problematic. Significant progress in climate quantification and geochronological control is now urgently required to robustly investigate change through this period. Copyright (c) 2006 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lichenometry is one of the most widely used methods of dating the surface age of substrata including rock surfaces, boulders, walls, and archaeological remains and has been particularly important in dating late Holocene glacial events. Yellow-green species of the crustose genus Rhizocarpon have been the most useful lichens in lichenometry because of their low growth rates and longevity. This review describes: (1) the biology of the genus Rhizocarpon, (2) growth rates and longevity, (3) environmental growth effects, (4) methods of estimating lichen age, (5) the methodology of lichenometry, (6) applications to dating glacial events, and (7) future research. Lichenometry depends on many assumptions, most critically that if the lag time before colonisation of a substratum is known and lichen age can be estimated, then a minimum surface age date can be obtained by measuring the size of the largest Rhizocarpon thallus. Lichen age can be estimated by calibrating thallus size against surfaces of known age (‘indirect lichenometry’), by constructing a growth rate-size curve from direct measurement of growth (‘direct lichenometry’), using radio-carbon (RC) dating, or from lichen ‘growth rings’. Future research should include a more rigorous investigation of the assumptions of lichenometry, especially whether the largest thallus present at a site is a good indicator of substratum age, and further studies on the establishment, development, growth, senescence, and mortality of Rhizocarpon lichens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We compare a compilation of 220 sediment core d13C data from the glacial Atlantic Ocean with three-dimensional ocean circulation simulations including a marine carbon cycle model. The carbon cycle model employs circulation fields which were derived from previous climate simulations. All sediment data have been thoroughly quality controlled, focusing on epibenthic foraminiferal species (such as Cibicidoides wuellerstorfi or Planulina ariminensis) to improve the comparability of model and sediment core carbon isotopes. The model captures the general d13C pattern indicated by present-day water column data and Late Holocene sediment cores but underestimates intermediate and deep water values in the South Atlantic. The best agreement with glacial reconstructions is obtained for a model scenario with an altered freshwater balance in the Southern Ocean that mimics enhanced northward sea ice export and melting away from the zone of sea ice production. This results in a shoaled and weakened North Atlantic Deep Water flow and intensified Antarctic Bottom Water export, hence confirming previous reconstructions from paleoproxy records. Moreover, the modeled abyssal ocean is very cold and very saline, which is in line with other proxy data evidence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At least two modes of glacial-interglacial climate change have existed within the tropical Atlantic Ocean during the last 20,000 years. The first mode (defined by cold glacial and warm interglacial conditions) occurred symmetrically north and south of the equator and dominated the eastern boundary currents and tropical upwelling areas. This pattern suggests that mode 1 is driven by a glacial modification of surface winds in both hemispheres. The second mode of oceanic climate change, defined by temperature extremes centered on the deglaciation, was hemispherically asymmetrical, with the northern tropical Atlantic relatively cold and the southern tropical Atlantic relatively warm during deglaciation. A likely cause for this pattern of variation is a reduction of the presently northward cross-equatorial heat flux during deglaciation. No single mechanism accounts for all the data. Potential contributors to oceanic climate changes are linkage to high-latitude climates, modification of monsoonal winds by ice sheet and/or insolation changes, atmospheric CO2 and greenhouse effects, indirect effects of glacial meltwater, and variations in thermohaline overturn of the oceans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Circum-Antarctic sediment thickness grids provide constraints for basin evolution and paleotopographic reconstructions, which are important for paleo-ice sheet formation histories. By compiling old and new seismic data, we identify sequences representing pre-glacial, transitional and full glacial deposition processes along the Pacific margin of West Antarctica. The pre-glacial sediment grid depicts 1.3 to 4.0 km thick depocenters, relatively evenly distributed along the margin. The depocenters change markedly in the transitional phase at, or after, the Eocene/Oligocene boundary, when the first major ice sheets reached the shelf. Full glacial sequences, starting in the middle Miocene, indicate new depocenter formation North of the Amundsen Sea Embayment and localized eastward shifts in the Bellingshausen Sea and Antarctic Peninsula basins. Using present-day drainage paths and source areas on the continent, our calculations indicate an estimated observed total sedimentary volume of ~10 x 10**6 km**3 was eroded from West Antarctica since the separation of New Zealand in the Late Cretaceous. Of this 4.9 x 10**6 km**3 predates the onset of glaciation and need to be considered for a paleotopography reconstruction of 34 Ma. Whereas 5.1 x 10**6 km**3 postdate the onset of glaciation, of which 2.5 x 10**6 km**3 were deposited in post mid-Miocene full glacial conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Site 532 on the Walvis Ridge was sampled at 4000- to 800-year intervals from 2.24 to 2.60 Ma, spanning the three large glacial advances of the late Pliocene. An age model was created by correlating the oxygen isotope record to Site 607 with linear interpolations between tie-lines. The resultant age model differs from that in the site reports by more than 800,000 years, due to misidentification of a magnetic boundary. Sedimentation rates varied by an order of magnitude at this site, with minimum accumulation during glacial events. Interglacial intervals were charactrized by high marine production and high summer precipitation on land, while glacials had very low production and arid continental climate. During the large glacial events (Stages 96-100) conditions of low production and continental aridity reached their greatest intensity, but there is no evidence of a permanent mode shift in either marine or terrestrial records. Calcite concentration has a strong variation at obliquity frequencies, with maxima during interglacials, but occasionally shows a large amplitude at precessional frequencies as well, so that high concentrations occur in a few glacial intervals. As a result, color variation is not a reliable guide to glacial-scale cycles at this site. Composition of the phytoplankton assemblage is diverse and highly variable, and we have not been able to distinguish a clear indicator of upwelling-related production. Spectral analysis reveals obliquity and precessional signals in the pollen data, while several diatom records contain combination tones, indicating that these data represent a complicated response to both local and high-latitude forcing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stable isotopic analyses of Middle Miocene to Quaternary foraminiferal calcite from east equatorial and central north Pacific DSDP cores have provided much new informatlon on the paleoceanography of the Pacific Neogene The history of delta18O change in planktonic foraminifera reflects the changing Isotopic composition and temperature of seawater at the time of test formation. Changes in the isotopic composition of benthonic foraminifera largely reflect changes m the volume of continental ice. Isotopic data from these cores indicates the following sequence of events related to continental glaciation (1) A permanent Antarctic ice sheet developed late in the Middle Miocene (about 13 to 11.5 m.y. ago) (2) The Late Miocene (about 11.5 to 5 m.y. ago) is marked by significant variation in delta18O of about 0.5? throughout, indicating instability of Antarctic ice cap size or bottom-water temperatures (3) The early Pliocene (5 to about 3 m.y. ago) was a time of relative stability in ice volume and bottom-water temperature (4) Growth of permanent Northern Hemisphere ice sheets is referred to have begun about 3 m.y. ago (5) The late Pliocene (3 to about 1.8 m.y. ago) is marked by one major glaciation or bottom-water cooling dated between about 2.1 to 2.3 m.y. (6) There is some evidence that the frequency of glacial-interglacial cycles increased at about 0.9 m.y. There is significant variation in delta13C at these sites but no geochemical interpretation is offered in this paper. The most outstanding feature of delta13C results is a permanent shift of about -0.8? found at about 6.5 m.y. in east equatorial and central north Pacific benthonic foraminifera. This benthonic carbon shift may form a useful marker in deep-sea cores recovering Late Miocene carbonates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sediment cores from the Western Mediterranean Sea (WMS) have been analyzed for their bulk element composition, delta18O values of planktic foraminiferal tests, and 87Sr/86Sr and 143Nd/144Nd ratios of their bulk lithogenic components. The investigated time interval comprises the last 215 kyr. Si/Al and Ti/Al ratios as well as radiogenic isotope compositions indicate changes in the provenance of the lithogenic components between glacial intervals and interglacial phases. Comparison with modern data indicates that detrital input from the northwestern and northeastern Sahara may have dominated during interglacial phases. In contrast, during glacial periods the accumulation rate of terrigenous sediment is high and changes in the sediment source areas are evident that may be related to changes in the prevailing atmospheric circulation over the basin and its source areas. A productivity reconstruction based on bio-mediated barium accumulation rates reveals increased surface productivity during glacial phases. Intervals time-equivalent to sapropel formation in the Eastern Mediterranean Sea (EMS) show no changes in surface productivity compared to the intervening intervals. Comparison of the productivity patterns between the WMS and EMS suggests a decoupling during Late Pleistocene sapropel formation and highlights the importance of more localized factors such as the freshwater drainage basin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a sediment core from the Pacific sector of the Antarctic Zone (AZ) of the Southern Ocean, we report diatom-bound N isotope (d15Ndb) records for total recoverable diatoms and two distinct diatom assemblages (pennate and centric rich). These data indicate tight coupling between the degree of nitrate consumption and Antarctic climate across the last two glacial cycles, with d15Ndb (and thus the degree of nitrate consumption) increasing at each major Antarctic cooling event. Coupled with evidence from opal- and barium-based proxies for reduced export production during ice ages, the d15Ndb increases point to ice age reductions in the supply of deep ocean-sourced nitrate to the AZ surface. The two diatom assemblages and species abundance data indicate that the d15Ndb changes are not the result of changing species composition. The pennate and centric assemblage d15Ndb records indicate similar changes but with a significant decline in their difference during peak ice ages. A tentative seasonality-based interpretation of the centric-to-pennate d15Ndb difference suggests that late summer surface waters became nitrate free during the peak glacials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of cores from east of New Zealand have been examined to determine the paleoceanographic history of the late Quaternary in the SW Pacific using planktonic foraminiferal data. Distinct shifts of species can be seen between glacial and interglacial times especially south of Chatham Rise east of South Island. Foraminiferal fragmentation ratios and benthic/planktonic foraminiferal ratios both show increased dissolution during glacials, especially isotope stage 2 to the south of Chatham Rise. The present-day Subtropical Convergence appears to be tied to the Chatham Rise at 44°S, but during glacial times this rise separated cold water to the south from much warmer water to the north, with an associated strong thermal gradient across the rise. We estimate that this gradient could have presented as much as an 8°C temperature change across 4° of latitude during the maximum of the last ice age. There is only weak evidence of the Younger Dryas cool event, but there is a clear climatic optimum between 8 and 6.4 ka with temperatures 1°-2°C higher than the present day. The marine changes compare well with vegetational changes on both South and North Island.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climatic and oceanographic changes, as occurring at a glacial-interglacial scale, may alter the environmental conditions needed for the development of prolific cold-water coral reefs and mounds. Studies constraining the temporal distribution of cold-water corals in the NE Atlantic suggested the cyclic changes of the Atlantic Meridional Overturning Circulation as the main driver for the development and dispersal of cold-water coral ecosystems. However, conclusions were hindered by lack of data from the NW Atlantic. Aiming to overcome this lack of data, the temporal occurrence of cold-water corals in the Cape Lookout area along the southeastern US margin was explored by U-series dating. Furthermore, the local influence of the regional water masses, namely the Gulf Stream, on cold-water coral proliferation and occurrence since the Last Glacial Maximum was examined. Results suggest that the occurrence of cold-water corals in the Cape Lookout area is restricted to interglacial periods, with corals being present during the last ~7 kyr and also during the Eemian (~125 ka). The reconstructed local environmental conditions suggest an offshore displacement of the Gulf Stream and increased influence from the Mid-Atlantic Bight shelf waters during the last glacial period. During the deglacial sea level rise, the Gulf Stream moved coastward providing present-day-like conditions to the surface waters. Nevertheless, present-day conditions at the ocean sea floor were not established before 7.5 cal ka BP once the ultimate demise of the Laurentide ice-sheet caused the final sea level rise and the displacement of the Gulf Stream to its present location. Occasional presence of the Gulf Stream over the site during the Mid- to Late Holocene coincides with enhanced bottom current strength and a slightly higher bottom water temperature, which are environmental conditions that are favorable for cold-water coral growth.