999 resultados para Laser milling
Resumo:
By using quite uniformly nine-stacks side-around arranged compact pumping system, a high power Nd:YAG ceramic quasi-CW laser with high slope efficiency of 62% has been demonstrated. With 450 W quasi-CW stacked laser diode bars pumping at 808 nm, performance of the Nd: YAG ceramic laser with different output coupling mirrors has been investigated. Optimum output power of 236 W at 1064 nm was obtained and corresponding optical-to-optical conversion efficiency was as high as 52.5%. The laser system operated quite stably and no saturation phenomena have been observed, which means higher output laser power could be obtained if injecting higher pumping power. The still-evolving Nd: YAG ceramics are potential super excellent media for high power practical laser applications. (c) 2005 Optical Society of America.
Resumo:
A novel double-slab Nd:YAG laser, which uses face-pumped slab medium cooled by liquid with different temperatures on both sides, is proposed. The thermal distortion of wavefront caused by the non-uniform temperature distribution in the laser gain media can be self-compensated. According to the method of operation, the models of the temperature distribution and stress are presented, and the analytic solutions for the model are derived. Furthermore, the numerical simulations with pulse pumping energy of 10 J and repetition frequencies of 500 and 1000 Hz are calculated respectively for Nd:YAG laser medium. The simulation results show that the temperature gradient remains the approximative linearity, and the heat stress is within the extreme range. Then the absorption coefficient is also discussed. The result indicates that the doping concentration cannot be too large for the high repetition frequency laser. It has been proved that the high repetition frequency, high laser beam quality, and high average output power of the order of kilowatt of Nd: YAG slab laser can be achieved in this structure.
Resumo:
We investigate the lasing characteristics of a laser-diode-array side-pumped electro-optic Q-switched Nd:Y3Al5O12 ceramic laser operating at 1000 Hz pulse repetition rate. Using a YAG poltcrystalline rod with Nd3+ concentration at 1 at.% as the gain medium, pumping with 808 nm laser-diode-arrays, the Q-switched laser output at 1064 nm wavelength with 23 mJ pulse energy and less than 12 ns FWHM pulse width are obtained at a pumping power of about 400 W, the slope efficiency is around 15%, the output beam divergence angle is about 1.2 mrad.
Resumo:
A novel dual-slab laser with off-axis one-sided hybrid resonator is presented. The mode properties of the hybrid resonator are calculated using a fast Fourier transform method (FFT). The influence of wavefront distoration on the output beam quality is considered. Results indicate that the novel dual-slab laser is better than the normal dual-slab laser with off-axis one-sided hybrid resonator.
Resumo:
CW laser output has been demonstrated for polycrystalline transparent 10 at.% Yb3+-doped Y2O3 ceramics. End-pumped with 970 nm laser diode, a maximum output power of 5.5 W has been obtained with absorbed pump power of 31.1 W. The slope efficiency is 25% while the threshold pump power is 5.6 W. Saturation is not observed in our experiments, indicating higher laser output can be expected with higher pump power. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A compact continuous-wave blue laser has been demonstrated by direct frequency doubling of a laser diode with a periodically poled lithium niobate (PPLN) waveguide crystal. The optimum PPLN temperature is near 28 degreesC, and the dependence of waveguide crystals on crystal temperature is less sensitive than that of bulk crystals. A total of 14.8 mW of 488-nm laser power has been achieved. (C) 2005 Optical Society of America.
Resumo:
In this paper, a highly efficient Ti:sapphire end-pumped 1 at.-% Nd:YAG ceramic laser that is comparable in efficiency with Nd:YAG single crystal lasers has been developed. Optical absorption and emission spectra for Nd:YAG ceramics have been measured. With 673-mW pumping, 295-mW laser output at 1064 nm has been obtained. The laser threshold is only 13 mW. Deducted the transmitted light, the corresponding optical-to-optical conversion efficiency is 58.4%. The lasing characteristics of Nd:YAG ceramic are nearly equal to those of Nd:YAG single crystal.
Resumo:
A kilowatt diode-pumped solid state heat capacity laser is fabricated with a double-slab Nd:YAG. Using the theoretical model of heat capacity laser output laser characteristics, the relationships between the output power, temperature and time are obtained. The slab is 59 x 40 4.5mm(3) in size. The average pump power is 11.2kW, the repetition rate is 1kHz, and the duty cycle 20%. During the running time of 1s, the output energy of the laser has a fluctuation with the maximal output energy at 2.06J, and the maximal output average power is 2.06kW. At the end of the second, the output energy declines to about 50% compared to the beginning. The thermal effects can be improved with one slab cooled by water. The experimental results are consistent with calculation data.