987 resultados para Land prices
Resumo:
Roadside surveys such as the Breeding Bird Survey (BBS) are widely used to assess the relative abundance of bird populations. The accuracy of roadside surveys depends on the extent to which surveys from roads represent the entire region under study. We quantified roadside land cover sampling bias in Tennessee, USA, by comparing land cover proportions near roads to proportions of the surrounding region. Roadside surveys gave a biased estimate of patterns across the region because some land cover types were over- or underrepresented near roads. These biases changed over time, introducing varying levels of distortion into the data. We constructed simulated population trends for five bird species of management interest based on these measured roadside sampling biases and on field data on bird abundance. These simulations indicated that roadside surveys may give overly negative assessments of the population trends of early successional birds and of synanthropic birds, but not of late-successional birds. Because roadside surveys are the primary source of avian population trend information in North America, we conclude that these surveys should be corrected for roadside land cover sampling bias. In addition, current recommendations about the need to create more early successional habitat for birds may need reassessment in the light of the undersampling of this habitat by roads.
Resumo:
The land/sea warming contrast is a phenomenon of both equilibrium and transient simulations of climate change: large areas of the land surface at most latitudes undergo temperature changes whose amplitude is more than those of the surrounding oceans. Using idealised GCM experiments with perturbed SSTs, we show that the land/sea contrast in equilibrium simulations is associated with local feedbacks and the hydrological cycle over land, rather than with externally imposed radiative forcing. This mechanism also explains a large component of the land/sea contrast in transient simulations as well. We propose a conceptual model with three elements: (1) there is a spatially variable level in the lower troposphere at which temperature change is the same over land and sea; (2) the dependence of lapse rate on moisture and temperature causes different changes in lapse rate upon warming over land and sea, and hence a surface land/sea temperature contrast; (3) moisture convergence over land predominantly takes place at levels significantly colder than the surface; wherever moisture supply over land is limited, the increase of evaporation over land upon warming is limited, reducing the relative humidity in the boundary layer over land, and hence also enhancing the land/sea contrast. The non-linearity of the Clausius–Clapeyron relationship of saturation specific humidity to temperature is critical in (2) and (3). We examine the sensitivity of the land/sea contrast to model representations of different physical processes using a large ensemble of climate model integrations with perturbed parameters, and find that it is most sensitive to representation of large-scale cloud and stomatal closure. We discuss our results in the context of high-resolution and Earth-system modelling of climate change.
Resumo:
Climate model simulations consistently show that in response to greenhouse gas forcing surface temperatures over land increase more rapidly than over sea. The enhanced warming over land is not simply a transient effect, since it is also present in equilibrium conditions. We examine 20 models from the IPCC AR4 database. The global land/sea warming ratio varies in the range 1.36–1.84, independent of global mean temperature change. In the presence of increasing radiative forcing, the warming ratio for a single model is fairly constant in time, implying that the land/sea temperature difference increases with time. The warming ratio varies with latitude, with a minimum in equatorial latitudes, and maxima in the subtropics. A simple explanation for these findings is provided, and comparisons are made with observations. For the low-latitude (40°S–40°N) mean, the models suggest a warming ratio of 1.51 ± 0.13, while recent observations suggest a ratio of 1.54 ± 0.09.