978 resultados para Land Surface Temperature
Resumo:
Variability in the oceanic environment of the Arabian Sea region is strongly influenced by the seasonal monsoon cycle of alternating wind directions. Prominent and well studied is the summer monsoon, but much less is known about late Holocene changes in winter monsoon strength with winds from the northeast that drive convective mixing and high surface ocean productivity in the northeastern Arabian Sea. To establish a high-resolution record of winter monsoon variability for the late Holocene, we analyzed alkenone-derived sea surface temperature (SST) variations and proxies of primary productivity (organic carbon and d15N) in a well-laminated sediment core from the Pakistan continental margin. Weak winter monsoon intensities off Pakistan are indicated from 400 B.C. to 250 A.D. by reduced productivity and relatively high SST. At about 250 A.D., the intensity of the winter monsoon increased off Pakistan as indicated by a trend to lower SST. We infer that monsoon conditions were relatively unstable from ~500 to 1300 A.D., because primary production and SST were highly variable. Declining SST and elevated biological production from 1400 to 1900 A.D. suggest invigorated convective winter mixing by strengthening winter monsoon circulation, most likely a regional expression of colder climate conditions during the Little Ice Age on the Northern Hemisphere. The comparison of winter monsoon intensity with records of summer monsoon intensity suggests that an inverse relationship between summer and winter monsoon strength exists in the Asian monsoon system during the late Holocene, effected by shifts in the Intertropical Convergence Zone.
Resumo:
We generated a high-resolution SSTMg/Ca record for the surface-dwelling planktonic foraminifera Globigerina bulloides from the core MD99-2346 collected in the Gulf of Lion, and compared it to that obtained using modern analogue techniques applied to fossil foraminiferal assemblages (SSTMAT). The two temperature records display similar patterns during the last 28,000 years but the SSTMg/Ca estimates are several degrees warmer (~+4 °C) than SSTMAT. The temperature shift between SSTMg/Ca and SSTMAT remained relatively constant over time. This seems to exclude a bias on the Mg/Ca record associated with salinity or secondary Mg-rich calcite encrustation on the foraminiferal tests during early diagenesis. Therefore, anomalously high Mg/Ca suggests either: (1) the empirical equation for G. bulloides of Elderfield and Ganssen (2000) is incorrect; or (2) there is a specific Mediterranean genotypes of G. bulloides for which a specific Mg/Ca-temperature calibration is needed.
Resumo:
The TEX86H temperature proxy is a relatively new proxy based on crenarchaeotal lipids and has rarely been applied together with other temperature proxies. In this study, we applied the TEX86H on a sediment core from the Alboran Sea (western Mediterranean, core ODP-977A) covering the penultimate climate cycle, that is, from 244 to 130 ka, and compared this with previously published sea surface temperatures derived from the Uk'37 of alkenones of haptophyta and Mg/Ca records of planktonic foraminifera. The TEX86H temperature record shows remarkably similar stadial-interstadial patterns and abrupt temperature changes to those observed with the Uk'37 palaeothermometer. Absolute TEX86H temperature estimates are generally higher than those of Uk'37, though this difference (<3°C in 81% of the data points) is mainly within the temperature calibration error for both proxies, suggesting that crenarchaeota and haptophyta experienced similar temperature variations. During occasional events (<5% of the analyzed time span), however, the TEX86H exhibits considerably higher absolute temperature estimates than the Uk'37. Comparison with Mg/Ca records of planktonic foraminifera as well as other Mediterranean TEX86 and Uk'37 records suggests that part of this divergence may be attributed to seasonal differences, that is, with TEX86H reflecting mainly the warm summer season while Uk'37 would show annual mean. Biases in the global calibration of both proxies or specific biases in the Mediterranean are an alternative, though less likely, explanation. Despite differences between absolute TEX86H and Uk'37 temperatures, the correlation between the two proxies (r**2 = 0.59, 95% significance) provides support for the occurrence of abrupt temperature variations in the western Mediterranean during the penultimate interglacial-to-glacial cycle.
Resumo:
Past sea surface water conditions of the western Iberian Margin were reconstructed based on biomarker analyses of a marine deep sea core MD03-2699 from the Estremadura Spur north off Lisbon, providing new insights into orbital and suborbital-scale climate variability between marine isotope stage (MIS) 15 to MIS 9 (580 to 300 ka). We use biomarker-based proxy records such as the alkenone unsaturated index to estimate sea surface temperature (SST), the total alkenone concentration to reconstruct phytoplankton productivity, and terrestrial biomarkers to evaluate the continental input. The results extend the existing biomarker record, namely the SST for the Iberian Margin, back to the sixth climatic cycle (580 ka). A general trend of stable interglacials contrasts with glacial periods and glacial inceptions which are marked by high-frequency variability. Thus, several short-lived climatic coolings were identified by large SST decreases, the occurrence of ice-rafted detritus and high percentages of the tetraunsaturated alkenone C 37:4. Some of these events were extremely cold and similar in their general trends to the well-known Heinrich events of the last glaciation. We identified eight Heinrich-type events between 580 and 300 ka. The general deglaciation pattern detected between MIS 15 and MIS 9 is similar in their general trends to that characterizing the more recent climatic cycles, i.e., marked by two coolings separated by a short warming episode which may reflect the southward, northward, and southward migration of the Polar Front.
Resumo:
The Indian monsoon system is an important climate feature of the northern Indian Ocean. Small variations of the wind and precipitation patterns have fundamental influence on the societal, agricultural, and economic development of India and its neighboring countries. To understand current trends, sensitivity to forcing, or natural variation, records beyond the instrumental period are needed. However, high-resolution archives of past winter monsoon variability are scarce. One potential archive of such records are marine sediments deposited on the continental slope in the NE Arabian Sea, an area where present-day conditions are dominated by the winter monsoon. In this region, winter monsoon conditions lead to distinctive changes in surface water properties, affecting marine plankton communities that are deposited in the sediment. Using planktic foraminifera as a sensitive and well-preserved plankton group, we first characterize the response of their species distribution on environmental gradients from a dataset of surface sediment samples in the tropical and sub-tropical Indian Ocean. Transfer functions for quantitative paleoenvironmental reconstructions were applied to a decadal-scale record of assemblage counts from the Pakistan Margin spanning the last 2000?years. The reconstructed temperature record reveals an intensification of winter monsoon intensity near the year 100 CE. Prior to this transition, winter temperatures were >1.5°C warmer than today. Conditions similar to the present seem to have established after 450 CE, interrupted by a singular event near 950 CE with warmer temperatures and accordingly weak winter monsoon. Frequency analysis revealed significant 75-, 40-, and 37-year cycles, which are known from decadal- to centennial-scale resolution records of Indian summer monsoon variability and interpreted as solar irradiance forcing. Our first independent record of Indian winter monsoon activity confirms that winter and summer monsoons were modulated on the same frequency bands and thus indicates that both monsoon systems are likely controlled by the same driving force.
Resumo:
We present high-resolution paleoceanographic records of surface and deep water conditions within the northern Red Sea covering the last glacial maximum and termination I using alkenone paleothermometry, stable oxygen isotopes, and sediment compositional data. Paleoceanographic records in the restricted desert-surrounded northern Red Sea are strongly affected by the stepwise sea level rise and appear to record and amplify well-known millennial-scale climate events from the North Atlantic realm. During the last glacial maximum (LGM), sea surface temperatures were about 4°C cooler than the late Holocene. Pronounced coolings associated with Heinrich event 1 (~2°C below the LGM level) and the Younger Dryas imply strong atmospheric teleconnections to the North Atlantic. Owing to the restricted exchange with the Indian Ocean, Red Sea salinity is particularly sensitive to changes in global sea level. Paleosalinities exceeded 50 psu during the LGM. A pronounced freshening of the surface waters is associated with the meltwater peaks MWP1a and MWP1b owing to an increased surface-near inflow of "normal" saline water from the Indian Ocean. Vertical delta18O gradients are also increased during these phases, indicating stronger surface water stratification. The combined effect of deglacial changes in sea surface temperature and salinity on water column stratification initiated the formation of two sapropel layers, which were deposited under almost anoxic condition in a stagnant water body.
Resumo:
Understanding past changes in sea surface temperatures (SSTs) is crucial; however, existing proxies for reconstructing past SSTs are hindered by unknown ancient seawater composition (foraminiferal Mg/Ca and d18O), or reflect subsurface temperatures (TEX86) or have a limited applicable temperature range (Uk'37). We examine clumped isotope (D47) thermometry to fossil coccolith-rich material as an SST proxy, as clumped isotopes are independent of original seawater composition and applicable to a wide temperature range and coccolithophores are widespread and dissolution resistant. The D47-derived temperatures from <63, <20, <10 and 2-5 µm size fractions of two equatorial Pacific late Miocene-early Pliocene sediment samples (c1; c2) range between ~18-29 {degree sign}C, with c1 temperatures consistently above c2. Removing the >63 µm fraction removes most non-mixed layer components; however, the D47-derived temperatures display an unexpected slight decreasing trend with decreasing size fraction. This unexpected trend could partly arise because larger coccoliths (5-12 µm) are removed during the size fraction separation process. The c1 and <63 µm c2 D47-derived temperatures are comparable to concurrent Uk'37 SSTs. The <20, <10 and 2-5 µm c2 D47-derived temperatures are consistently cooler than expected. The D47-Uk'37 temperature offset is probably caused by abiotic/diagenetic calcite present in the c2 2-5 µm fraction (~53% by area), which potentially precipitated at bottom water temperatures of ~6 {degree sign}C . Our results indicate that clumped isotopes on coccolith-rich sediment fractions have potential as an SST proxy, particularly in tropical regions, providing that careful investigation of the appropriate size fraction for the region and timescale is undertaken.
Resumo:
This Special Issue of The Holocene contains 16 research papers based on a symposium at the 11th International Meeting of the European Union of Geosciences held in Strasbourg in April 2001. The aim of the symposium was a state-of-the-art assessment of empirical studies of postglacial marine and terrestrial climatic archives and their integration with numerical climate models. This editorial places the individual papers in the broader context of natural climate variability and anthropogenic impacts on the global climate system, regional differences in climate between maritime and continental areas, and the need for an improved theoretical basis for understanding the underlying causes of environmental change. The focus of the Special Issue is the dynamic and relatively well-understood climate of the North Atlantic and the European realm, where, in relation to the steepest offshore temperature gradient on Earth, observational data are abundant and many recent advances have been made in climate reconstruction from proxy archives. The editorial also contains a summary and overview of the papers included in the four main sections of the Special Issue, which emphasize: (1) numerical modelling experiments; (2) models of glacier buildup and equilibrium-line altitude; (3) marine and terrestrial proxy records of climatic change; and (4) multiproxy palaeoenvironmental reconstruction of a Portuguese lagoonal system.
Resumo:
Present day hydrographic conditions along the western Iberian margin are characterized by seasonal upwelling with filaments that can penetrate more than 200 km into the open ocean and constitute areas of cold and highly productive waters. In order to investigate spatial and temporal gradients in temperature and productivity conditions during the last 150 ky, high-resolution proxy records were generated in 3 cores (SU92-03, MD95-2040, MD95-2042), located along the Iberian coast between 43°12'N and 37°48'N and forming a N-S profile. In all cores, planktonic foraminifera census counts are used to reconstruct summer sea surface temperature (SSTsu) and export productivity (Pexpsu) using the modern analog technique SIMMAX 28. SSTsu and Pexpsu values similar to the present are observed throughout the Holocene and MIS 5e periods for each site, respectively, indicating fairly stable conditions equivalent to the modern ones. On glacial/interglacial timescales, SSTsu increases by 2-3 °C from the northern to southernmost site. Pexpsu, on the other hand, shows a decrease of 30-40 gC/m**2/yr from North to South at present time and during interglacial periods, and no significant variation (90-100 gC/m**2/yr) during glacial periods. The northernmost core SU92-03 reveals the coldest conditions with records more similar to MD95-2040 than to MD95-2042, the later of which is, as at present, more affected by subtropical waters. Core SU92-03 shows higher interglacial productivity similar to open ocean mid- to high latitude sites, while the other two cores monitor higher glacial productivity conform with other upwelling sites off NW Africa. A boundary between differences in glacial/interglacial productivity appears to be present in our study between 43°12'N and 40°35'N. Especially north of 40°N, coldest SSTsu and lowest Pexpsu are found during Heinrich events (H)1-H8 and H10-H11. In contrast, lowest Pexpsu do not coincide with these events at site MD95-2042, but appear to be related to the presence of relatively warm and nutrient-poor subtropical Eastern North Atlantic Central Water advected with the Azores Current.