957 resultados para Lagrangian bounds in optimization problems
Resumo:
The increasing use of Carbon-Fibre Reinforced Plastic (CFRP) laminates in high responsibility applications introduces an issue regarding their handling after damage. The availability of efficient repair methods is essential to restore the strength of the structure. The availability of accurate predictive tools for the repairs behaviour is also essential for the reduction of costs and time associated to extensive tests. This work reports on a numerical study of the tensile behaviour of three-dimensional (3D) adhesively-bonded scarf repairs in CFRP structures, using a ductile adhesive. The Finite Element (FE) analysis was performed in ABAQUS® and Cohesive Zone Models (CZM’s) was used for the simulation of damage in the adhesive layer. A parametric study was performed on two geometric parameters. The use of overlaminating plies covering the repaired region at the outer or both repair surfaces was also tested as an attempt to increase the repairs efficiency. The results allowed the proposal of design principles for repairing CFRP structures.
Resumo:
Meshless methods are used for their capability of producing excellent solutions without requiring a mesh, avoiding mesh related problems encountered in other numerical methods, such as finite elements. However, node placement is still an open question, specially in strong form collocation meshless methods. The number of used nodes can have a big influence on matrix size and therefore produce ill-conditioned matrices. In order to optimize node position and number, a direct multisearch technique for multiobjective optimization is used to optimize node distribution in the global collocation method using radial basis functions. The optimization method is applied to the bending of isotropic simply supported plates. Using as a starting condition a uniformly distributed grid, results show that the method is capable of reducing the number of nodes in the grid without compromising the accuracy of the solution. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a case study of heat exchanger network (HEN) retrofit with the objective to reduce the utilities consumption in a biodiesel production process. Pinch analysis studies allow determining the minimum duty utilities as well the maximum of heat recovery. The existence of heat exchangers for heat recovery already running in the process causes a serious restriction for the implementation of grassroot HEN design based on pinch studies. Maintaining the existing HEN, a set of alternatives with additional heat exchangers was created and analysed using some industrial advice and selection criteria. The final proposed solution allows to increase the actual 18 % of recovery heat of the all heating needs of the process to 23 %, with an estimated annual saving in hot utility of 35 k(sic)/y.
Resumo:
As it is well known, competitive electricity markets require new computing tools for power companies that operate in retail markets in order to enhance the management of its energy resources. During the last years there has been an increase of the renewable penetration into the micro-generation which begins to co-exist with the other existing power generation, giving rise to a new type of consumers. This paper develops a methodology to be applied to the management of the all the aggregators. The aggregator establishes bilateral contracts with its clients where the energy purchased and selling conditions are negotiated not only in terms of prices but also for other conditions that allow more flexibility in the way generation and consumption is addressed. The aggregator agent needs a tool to support the decision making in order to compose and select its customers' portfolio in an optimal way, for a given level of profitability and risk.
Resumo:
Redundant manipulators allow the trajectory optimization, the obstacle avoidance, and the resolution of singularities. For this type of manipulators, the kinematic control algorithms adopt generalized inverse matrices that may lead to unpredictable responses. Motivated by these problems this paper studies the complexity revealed by the trajectory planning scheme when controlling redundant manipulators. The results reveal fundamental properties of the chaotic phenomena and give a deeper insight towards the development of superior trajectory control algorithms.
Resumo:
IEEE International Symposium on Circuits and Systems, pp. 724 – 727, Seattle, EUA
Resumo:
Trihalomethanes (THMs) are widely referred and studied as disinfection by-products (DBPs). The THMs that are most commonly detected are chloroform (TCM), bromodichloromethane (BDCM), chlorodibromomethane (CDBM), and bromoform (TBM). Several studies regarding the determination of THMs in swimming pool water and air samples have been published. This paper reviews the most recent work in this field, with a special focus on water and air sampling, sample preparation and analytical determination methods. An experimental study has been developed in order to optimize the headspace solid-phasemicroextraction (HS-SPME) conditions of TCM, BDCM, CDBM and TBM from water samples using a 23 factorial design. An extraction temperature of 45 °C, for 25min, and a desorption time of 5 min were found to be the best conditions. Analysis was performed by gas chromatography with an electron capture detector (GC-ECD). The method was successfully applied to a set of 27 swimming pool water samples collected in the Oporto area (Portugal). TCM was the only THM detected with levels between 4.5 and 406.5 μg L−1. Four of the samples exceeded the guideline value for total THMs in swimming pool water (100 μgL−1) indicated by the Portuguese Health Authority.
Resumo:
Within a large set of renewable energies being explored to tackle energy sourcing problems, bioenergy can represent an attractive solution if effectively managed. The supply chain design supported by mathematical programming can be used as a decision support tool to the successful bioenergy production systems establishment. This strategic decision problem is addressed in this paper where we intent to study the design of the residual forestry biomass to bioelectricity production in the Portuguese context. In order to contribute to attain better solutions a mixed integer linear programming (MILP) model is developed and applied in order to optimize the design and planning of the bioenergy supply chain. While minimizing the total supply chain cost the production energy facilities capacity and location are defined. The model also includes the optimal selection of biomass amounts and sources, the transportation modes selection, and links that must be established for biomass transportation and products delivers to markets. Results illustrate the positive contribution of the mathematical programming approach to achieve viable economic solutions. Sensitivity analysis on the most uncertain parameters was performed: biomass availability, transportation costs, fixed operating costs and investment costs. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Coffee silverskin is a major roasting by-product that could be valued as a source of antioxidant compounds. The effect of the major variables (solvent polarity, temperature and extraction time) affecting the extraction yields of bioactive compounds and antioxidant activity of silverskin extracts was evaluated. The extracts composition varied significantly with the extraction conditions used. A factorial experimental design showed that the use of a hydroalcoholic solvent (50%:50%) at 40 °C for 60 min is a sustainable option to maximize the extraction yield of bioactive compounds and the antioxidant capacity of extracts. Using this set of conditions it was possible to obtain extracts containing total phenolics (302.5 ± 7.1 mg GAE/L), tannins (0.43 ± 0.06 mg TAE/L), and flavonoids (83.0 ± 1.4 mg ECE/L), exhibiting DPPHradical dot scavenging activity (326.0 ± 5.7 mg TE/L) and ferric reducing antioxidant power (1791.9 ± 126.3 mg SFE/L). These conditions allowed, in comparison with other “more effective” for some individual parameters, a cost reduction, saving time and energy.
Resumo:
The bending of simply supported composite plates is analyzed using a direct collocation meshless numerical method. In order to optimize node distribution the Direct MultiSearch (DMS) for multi-objective optimization method is applied. In addition, the method optimizes the shape parameter in radial basis functions. The optimization algorithm was able to find good solutions for a large variety of nodes distribution.
Resumo:
Hyperspectral imaging can be used for object detection and for discriminating between different objects based on their spectral characteristics. One of the main problems of hyperspectral data analysis is the presence of mixed pixels, due to the low spatial resolution of such images. This means that several spectrally pure signatures (endmembers) are combined into the same mixed pixel. Linear spectral unmixing follows an unsupervised approach which aims at inferring pure spectral signatures and their material fractions at each pixel of the scene. The huge data volumes acquired by such sensors put stringent requirements on processing and unmixing methods. This paper proposes an efficient implementation of a unsupervised linear unmixing method on GPUs using CUDA. The method finds the smallest simplex by solving a sequence of nonsmooth convex subproblems using variable splitting to obtain a constraint formulation, and then applying an augmented Lagrangian technique. The parallel implementation of SISAL presented in this work exploits the GPU architecture at low level, using shared memory and coalesced accesses to memory. The results herein presented indicate that the GPU implementation can significantly accelerate the method's execution over big datasets while maintaining the methods accuracy.
Resumo:
Hyperspectral imaging has become one of the main topics in remote sensing applications, which comprise hundreds of spectral bands at different (almost contiguous) wavelength channels over the same area generating large data volumes comprising several GBs per flight. This high spectral resolution can be used for object detection and for discriminate between different objects based on their spectral characteristics. One of the main problems involved in hyperspectral analysis is the presence of mixed pixels, which arise when the spacial resolution of the sensor is not able to separate spectrally distinct materials. Spectral unmixing is one of the most important task for hyperspectral data exploitation. However, the unmixing algorithms can be computationally very expensive, and even high power consuming, which compromises the use in applications under on-board constraints. In recent years, graphics processing units (GPUs) have evolved into highly parallel and programmable systems. Specifically, several hyperspectral imaging algorithms have shown to be able to benefit from this hardware taking advantage of the extremely high floating-point processing performance, compact size, huge memory bandwidth, and relatively low cost of these units, which make them appealing for onboard data processing. In this paper, we propose a parallel implementation of an augmented Lagragian based method for unsupervised hyperspectral linear unmixing on GPUs using CUDA. The method called simplex identification via split augmented Lagrangian (SISAL) aims to identify the endmembers of a scene, i.e., is able to unmix hyperspectral data sets in which the pure pixel assumption is violated. The efficient implementation of SISAL method presented in this work exploits the GPU architecture at low level, using shared memory and coalesced accesses to memory.
Resumo:
One of the main problems of hyperspectral data analysis is the presence of mixed pixels due to the low spatial resolution of such images. Linear spectral unmixing aims at inferring pure spectral signatures and their fractions at each pixel of the scene. The huge data volumes acquired by hyperspectral sensors put stringent requirements on processing and unmixing methods. This letter proposes an efficient implementation of the method called simplex identification via split augmented Lagrangian (SISAL) which exploits the graphics processing unit (GPU) architecture at low level using Compute Unified Device Architecture. SISAL aims to identify the endmembers of a scene, i.e., is able to unmix hyperspectral data sets in which the pure pixel assumption is violated. The proposed implementation is performed in a pixel-by-pixel fashion using coalesced accesses to memory and exploiting shared memory to store temporary data. Furthermore, the kernels have been optimized to minimize the threads divergence, therefore achieving high GPU occupancy. The experimental results obtained for the simulated and real hyperspectral data sets reveal speedups up to 49 times, which demonstrates that the GPU implementation can significantly accelerate the method's execution over big data sets while maintaining the methods accuracy.
Resumo:
In this paper we address an order processing optimization problem known as minimization of open stacks (MOSP). We present an integer pro gramming model, based on the existence of a perfect elimination scheme in interval graphs, which finds an optimal sequence for the costumers orders.