951 resultados para LCA, green chemistry, chemicals, impatto ambientale, propano, propilene
Resumo:
Australian native foods have long been consumed by the Indigenous people of Australia. There is growing interest in the application of these foods in the functional food and complementary health care industries. Recent studies have provided information on the health properties of native foods but systematic study of changes in flavour and health components during processing and storage has not been done. It is well known that processing technologies such as packaging, drying and freezing can significantly alter the levels of health and flavour compounds. However, losses in compounds responsible for quality and bioactivity can be minimised by improving production practices. This report outlines research developed to provide the native food industry with reliable information on the retention of bioactive compounds during processing and storage to enable the development of product standards which in turn will provide the industry with scientific evidence to expand and explore new market opportunities globally.
Resumo:
The antibacterial activity and total phenolic (TP) content of Agaricus bisporus stipes were assessed using solvent and water extracts to determine its bioactivity. Extraction methods included accelerated solvent extraction (ASE) and hot water followed by membrane concentration. Water extract from ASE had the highest TP of 1.08 gallic acid equivalents (GAE)/g dry weight (DW) followed by ethanol at 0.61 mg GAE/g DW and 0.11 mg GAE/g DW for acetone. Acetone extracts inhibited Escherichia coli and Staphylococcus aureus at less than 50%; ethanol inhibited E. coli at 61.9% and S. aureus at 56.6%; and ASE water inhibited E. coli at 78.6% and S. aureus at 65.4%. The TP content of membrane concentrated extract of mushroom was 17 mg GAE in 100 mL. Membrane concentrated water extracts had a higher percentage inhibition on S. aureus than E. coli. Overall, the results were promising for further application of mushroom stipe extracts as a functional food additive. Practical Applications Mushrooms are known for their health benefits and have been identified as a good source of nutrients. The highly perishable nature of mushrooms warrants further processing and preservation to minimize losses along the supply chain. This study explores the possibility of adding value to mushroom stipes, a by-product of the fresh mushroom industry. The extracts assessed indicate the antibacterial activity and phenolic content, and the potential of using these extracts as functional ingredients in the food industry. This study provides valuable information to the scientific community and to the industries developing novel ingredients to meet the market demand for natural food additives.
Resumo:
The goal of this research is to understand the function of allelic variation of genes underpinning the stay-green drought adaptation trait in sorghum in order to enhance yield in water-limited environments. Stay-green, a delayed leaf senescence phenotype in sorghum, is primarily an emergent consequence of the improved balance between the supply and demand of water. Positional and functional fine-mapping of candidate genes associated with stay-green in sorghum is the focus of an international research partnership between Australian (UQ/DAFFQ) and US (Texas A&M University) scientists. Stay-green was initially mapped to four chromosomal regions (Stg1, Stg2, Stg3, and Stg4) by a number of research groups in the US and Australia. Physiological dissection of near-isolines containing single introgressions of Stg QTL (Stg1-4) indicate that these QTL reduce water demand before flowering by constricting the size of the canopy, thereby increasing water availability during grain filling and, ultimately, grain yield. Stg and root angle QTL are also co-located and, together with crop water use data, suggest the role of roots in the stay-green phenomenon. Candidate genes have been identified in Stg1-4, including genes from the PIN family of auxin efflux carriers in Stg1 and Stg2, with 10 of 11 PIN genes in sorghum co-locating with Stg QTL. Modified gene expression in some of these PIN candidates in the stay-green compared with the senescent types has been found in preliminary RNA expression profiling studies. Further proof-of-function studies are underway, including comparative genomics, SNP analysis to assess diversity at candidate genes, reverse genetics and transformation.
Resumo:
Reverse osmosis (RO) brine produced at a full-scale coal seam gas (CSG) water treatment facility was characterized with spectroscopic and other analytical techniques. A number of potential scalants including silica, calcium, magnesium, sulphates and carbonates, all of which were present in dissolved and non-dissolved forms, were characterized. The presence of spherical particles with a size range of 10–1000 nm and aggregates of 1–10 microns was confirmed by transmission electron microscopy (TEM). Those particulates contained the following metals in decreasing order: K, Si, Sr, Ca, B, Ba, Mg, P, and S. Characterization showed that nearly one-third of the total silicon in the brine was present in the particulates. Further, analysis of the RO brine suggested supersaturation and precipitation of metal carbonates and sulphates during the RO process should take place and could be responsible for subsequently capturing silica in the solid phase. However, the precipitation of crystalline carbonates and sulphates are complex. X-ray diffraction analysis did not confirm the presence of common calcium carbonates or sulphates but instead showed the presence of a suite of complex minerals, to which amorphous silica and/or silica rich compounds could have adhered. A filtration study showed that majority of the siliceous particles were less than 220 nm in size, but could still be potentially captured using a low molecular weight ultrafiltration membrane.
Resumo:
Variation in strontium (Sr) and barium (Ba) within otoliths is invaluable to studies of fish diadromy. Typically, otolith Sr : Ca is positively related to salinity, and the ratios of Ba and Sr to calcium (Ca) vary in opposite directions in relation to salinity. In this study of jungle perch, Kuhlia rupestris, otolith Sr : Ca and Ba : Ca, however, showed the same rapid increase as late-larval stages transitioned directly from a marine to freshwater environment. This transition was indicated by a microstructural check mark on otoliths at 35–45 days age. As expected ambient Sr was lower in the fresh than the marine water, however, low Ca levels (0.4 mg L–1) of the freshwater resulted in the Sr : Ca being substantially higher than the marine water. Importantly, the otolith Sr : Ba ratio showed the expected pattern of a decrease from the marine to freshwater stage, illustrating that Sr : Ba provided a more reliable inference of diadromous behaviour based on prior expectations of their relationship to salinity, than did Sr : Ca. The results demonstrate that Ca variation in freshwaters can potentially be an important influence on otolith element : Ca ratios and that inferences of marine–freshwater habitat use from otolith Sr : Ca alone can be problematic without an understanding of water chemistry.
Resumo:
High levels of percentage green veneer recovery can be obtained from temperate eucalypt plantations. Recovery traits are affected by site and log position in the stem. Of the post-felling log traits studied, out-of-roundness was the best predictor of green recovery.
Resumo:
Sorghum is a staple food for half a billion people and, through growth on marginal land with minimal inputs, is an important source of feed, forage and increasingly, biofuel feedstock. Here we present information about non-cellulosic cell wall polysaccharides in a diverse set of cultivated and wild Sorghum bicolor grains. Sorghum grain contains predominantly starch (64–76) but is relatively deficient in other polysaccharides present in wheat, oats and barley. Despite overall low quantities, sorghum germplasm exhibited a remarkable range in polysaccharide amount and structure. Total (1,3;1,4)-β-glucan ranged from 0.06 to 0.43 (w/w) whilst internal cellotriose:cellotetraose ratios ranged from 1.8 to 2.9:1. Arabinoxylan amounts fell between 1.5 and 3.6 (w/w) and the arabinose:xylose ratio, denoting arabinoxylan structure, ranged from 0.95 to 1.35. The distribution of these and other cell wall polysaccharides varied across grain tissues as assessed by electron microscopy. When ten genotypes were tested across five environmental sites, genotype (G) was the dominant source of variation for both (1,3;1,4)-β-glucan and arabinoxylan content (69–74), with environment (E) responsible for 5–14. There was a small G × E effect for both polysaccharides. This study defines the amount and spatial distribution of polysaccharides and reveals a significant genetic influence on cell wall composition in sorghum grain.
Resumo:
Anaerobic digestion is a viable on-site treatment technology for rich organic waste streams such as food waste and blackwater. In contrast to large-scale municipal wastewater treatment plants which are typically located away from the community, the effluent from any type of on-site system is a potential pathogenic hazard because of the intimacy of the system to the community. The native concentrations of the pathogen indicators Escherichia coli, Clostridium perfringens and somatic coliphage were tracked for 30 days under stable operation (organic loading rate (OLR) = 1.8 kgCOD m(-3) day(-1), methane yield = 52% on a chemical oxygen demand (COD) basis) of a two-stage laboratory-scale digester treating a mixture of food waste and blackwater. E. coli numbers were reduced by a factor of 10(6.4) in the thermophilic stage, from 10(7.5+/-0.3) to 10(1.1+/-0.1) cfu 100 mL(-1), but regenerated by a factor of 10(4) in the mesophilic stage. Neither the thermophilic nor mesophilic stages had any significant impact on C. perfringens concentrations. Coliphage concentrations were reduced by a factor of 10(1.4) across the two stages. The study shows that anaerobic digestion only reduces pathogen counts marginally but that counts in effluent samples could be readily reduced to below detection limits by filtration through a 0.22 microm membrane, to investigate membrane filtration as a possible sanitation technique.
Resumo:
Litter moisture content has been related to ammonia, dust and odour emissions as well as bird health and welfare. Improved understanding of the water holding properties of poultry litter as well as water additions to litter and evaporation from litter will contribute to improved litter moisture management during the meat chicken grow-out. The purpose of this paper is to demonstrate how management and environmental conditions over the course of a grow-out affect the volume of water A) applied to litter, B) able to be stored in litter, and C) evaporated from litter on a daily basis. The same unit of measurement has been used to enable direct comparison—litres of water per square metre of poultry shed floor area, L/m2, assuming a litter depth of 5 cm. An equation was developed to estimate the amount of water added to litter from bird excretion and drinking spillage, which are sources of regular water application to the litter. Using this equation showed that water applied to litter from these sources changes over the course of a grow-out, and can be as much as 3.2 L/m2/day. Over a 56 day grow-out, the total quantity of water added to the litter was estimated to be 104 L/m2. Litter porosity, water holding capacity and water evaporation rates from litter were measured experimentally. Litter porosity decreased and water holding capacity increased over the course of a grow-out due to manure addition. Water evaporation rates at 25 °C and 50% relative humidity ranged from 0.5 to 10 L/m2/day. Evaporation rates increased with litter moisture content and air speed. Maintaining dry litter at the peak of a grow-out is likely to be challenging because evaporation rates from dry litter may be insufficient to remove the quantity of water added to the litter on a daily basis.
Resumo:
This guide provides information on how to match nutrient rate to crop needs by varying application rates and timing between blocks, guided by soil tests, crop class, cane variety, soil type, block history, soil conditioners and yield expectations.
Resumo:
Deliquescent calcium chloride (CaCl2) and magnesium chloride (MgCl2) were investigated for their practical application to release ethylene gas from an ethylene-α-cyclodextrin inclusion complexes (CD IC) powder at relative humidities (RHs) between 11.2 and 93.6 % at 18 °C. The IC powder and deliquescent salts were mixed at a ratio of 1:5, respectively. CaCl2 and MgCl2 started to deliquesce at 32.7 % RH. The IC powder dissolved in the concentrated salt solutions to release ethylene gas. Increasing the RH accelerated the release rate. Maximum release of ethylene gas was achieved after 24 h at 75.5 and 93.6 % RH for both IC powder-deliquescent salts mixture. The deliquescent salts proved to be a simple option for releasing ethylene gas from the IC powder.
Resumo:
In order to meet the world’s growing energy demand and reduce the impact of greenhouse gas emissions resulting from fossil fuel combustion, renewable plant-based feedstocks for biofuel production must be considered. The first-generation biofuels, derived from starches of edible feedstocks, such as corn, create competition between food and fuel resources, both for the crop itself and the land on which it is grown. As such, biofuel synthesized from non-edible plant biomass (lignocellulose) generated on marginal agricultural land will help to alleviate this competition. Eucalypts, the broadly defined taxa encompassing over 900 species of Eucalyptus, Corymbia, and Angophora are the most widely planted hardwood tree in the world, harvested mainly for timber, pulp and paper, and biomaterial products. More recently, due to their exceptional growth rate and amenability to grow under a wide range of environmental conditions, eucalypts are a leading option for the development of a sustainable lignocellulosic biofuels. However, efficient conversion of woody biomass into fermentable monomeric sugars is largely dependent on pretreatment of the cell wall, whose formation and complexity lend itself toward natural recalcitrance against its efficient deconstruction. A greater understanding of this complexity within the context of various pretreatments will allow the design of new and effective deconstruction processes for bioenergy production. In this review, we present the various pretreatment options for eucalypts, including research into understanding structure and formation of the eucalypt cell wall.
Resumo:
From 2012-2014 the Queensland Government delivered an extension project to help sugarcane growers adopt best management practices to reduce pollutant loss to the Great Barrier Reef. Coutts J&R were engaged to measure progress towards the project's engagement, capacity gain and practice change targets. The monitoring and evaluation program comprised a database, post-workshop evaluations and grower and advisor surveys. Coutts J&R conducted an independent phone survey with 97 growers, a subset of the 900 growers engaged in extension activities. Of those surveyed 64% stated they had made practice changes. There was higher (74%) adoption by growers engaged in one-on-one extension than those growers only involved in group-based activities (36%). Overall, the project reported 41% (+/-10%, 95% confidence) of growers engaged made a practice change. The structured monitoring and evaluation program, including independent surveys, was essential to quantify practice change and demonstrate the effectiveness of extension in contributing to water quality improvement.
Resumo:
Few data exist on direct greenhouse gas emissions from pen manure at beef feedlots. However, emission inventories attempt to account for these emissions. This study used a large chamber to isolate N2O and CH4 emissions from pen manure at two Australian commercial beef feedlots (stocking densities, 13-27 m(2) head) and related these emissions to a range of potential emission control factors, including masses and concentrations of volatile solids, NO3-, total N, NH4+, and organic C (OC), and additional factors such as total manure mass, cattle numbers, manure pack depth and density, temperature, and moisture content. Mean measured pen N2O emissions were 0.428 kg ha(-1) d(-1) (95% confidence interval [CI], 0.252-0.691) and 0.00405 kg ha(-1) d(-1) (95% CI, 0.00114-0.0110) for the northern and southern feedlots, respectively. Mean measured CH4 emission was 0.236 kg ha(-1) d(-1) (95% CI, 0.163-0.332) for the northern feedlot and 3.93 kg ha(-1) d(-1) (95% CI, 2.58-5.81) for the southern feedlot. Nitrous oxide emission increased with density, pH, temperature, and manure mass, whereas negative relationships were evident with moisture and OC. Strong relationships were not evident between N2O emission and masses or concentrations of NO3- or total N in the manure. This is significant because many standard inventory calculation protocols predict N2O emissions using the mass of N excreted by the animal.
Resumo:
CaH406P-.K +, M r = 206.10, is orthorhombic, space group Pbca (from systematic absences), a = 14.538(4), b = 13.364(5), c = 6.880 (6)A, U = 1383.9 A 3, D x = 2.07 Mg m -a, Z = 8, ~.(Mo Ka) = 0.7107/~, p(MO Ka) = 1.015 mm -1. The final R value is 0.042 for a total of 1397 reflections. The high energy P-O(13) and the enolic C(1)-O(13) bonds are 1.612 and 1.374 A respectively. The enolpyruvate moiety is essentially planar. The orientation of the phosphate with respect to the pyruvate group in PEP.K is distinctly different from that in the PEP-cyclohexylammonium salt, the torsion angle C (2)-C (1)-O(13)- P being -209.1 in the former and -90 ° in the latter. The K + ion binds simultaneously to both the phosphate and carboxyl ends of the same PEP molecule. The ester O(13) is also a binding site for the cation. The K + ion is coplanar with the pyruvate moiety and binds to 0(22) and O(13) almost along their lone-pair directions. The carbonyl 0(22) prefers to bind to the K + ion rather than take part in the formation of hydrogen bonds usually observed in carboxylic acid structures.